检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行训练任务(历史版本) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
user_converted_ckpt_path=xxx 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径obs://<bucke
义镜像创建的训练作业才有该参数。 “代码目录” 训练作业代码目录所在的OBS路径。 您可以单击代码目录后的“编辑代码”,在“OBS在线编辑”对话框中实时编辑训练脚本代码。当训练作业状态为“等待中”、“创建中”和“运行中”时,不支持“OBS在线编辑”功能。 说明: 当您使用订阅算法创建训练作业时,不支持该参数。
policy”原则。该设计原则更推荐直接复制粘贴代码,而不是进行抽象处理。因此,与模型前向运算相关的所有源代码都被直接复制粘贴到同一个文件中,而不是调用某些抽象提取出的模块化库。Diffusers的这种设计原则的好处是代码简单易用、对代码贡献者友好。然而,这种反软件结构化的设计也有明
user_converted_ckpt_path=xxx 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径obs://<bucke
912版本同时兼容历史版本的训练任务启动方式。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指
执行训练任务(历史版本) 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
ebook。 Step2 准备权重文件 将OBS中的模型权重上传到Notebook的工作目录/home/ma-user/work/下。上传代码参考如下。 import moxing as mox obs_dir = "obs://${bucket_name}/${folder-name}"
增加数据量。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/processor-tasks 表1 路径参数 参数 是否必选
ipynb格式文件),可直接在CodeLab中打开,查看他人分享的样例代码。 功能亮点 免费算力 CodeLab内置了免费算力,包含CPU和GPU两种。您可以使用免费规格,端到端体验ModelArts Notebook能力。也可使用此免费算力,在线完成您的算法开发。 即开即用 无需创建Notebook实例,打开即可编码。
见部署在线服务。 图3 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 若以vllm接口启动服务,设置请求路径:“/generate”,输入预测代码“{"prompt":
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
桶的拥有者配置权限。 确保此OBS桶是非加密桶 进入OBS管理控制台,选择当前自动学习项目使用的OBS桶,单击桶名称进入概览页。 确保此OBS桶的加密功能关闭。如果此OBS桶为加密桶,可单击“默认加密”选项进行修改。 图1 OBS桶是否加密 确保归档数据直读功能关闭 进入OBS管
改。推荐用户使用该方式进行训练。 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
ebook。 Step2 准备权重文件 将OBS中的模型权重上传到Notebook的工作目录/home/ma-user/work/下。上传代码参考如下。 import moxing as mox obs_dir = "obs://${bucket_name}/${folder-name}"
执行训练任务(历史版本) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
执行训练任务(历史版本) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
改。推荐用户使用该方式进行训练。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
支持语言 GLM-4 文本生成 对话问答、长文本推理、代码生成 中文、英文 ChatGLM3 文本生成 对话问答、数学推理、代码生成 中文、英文 Yi 文本生成 代码生成、数学推理、对话问答 中文、英文 通义千问1.5 文本生成 代码生成、数学推理、对话问答 英文 通义千问 文本生成
进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、使用该量化工具,需要切换conda环境,运行以下命令。