检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
应用示例 创建图像分类数据集并进行标注任务 创建并完成图像分类的智能标注任务 开发环境的应用示例 以PyTorch框架创建训练作业(新版训练) 创建和修改工作空间 管理ModelArts服务的委托授权
应用迁移 模型适配 pipeline代码适配 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
mpletions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。若服务部署在Notebo
时会直接保存到浏览器默认的下载文件夹中。 PathMappings: 该参数为本地IDE项目和Notebook对应的同步目录,默认为/home/ma-user/work/project名称,可根据自己实际情况更改。 单击“Apply”,配置完成后,重启IDE生效。 重启后初次进行update
com/repository/pypi/simple Flask # 复制应用服务代码进镜像里面 COPY test_app.py /opt/test_app.py # 指定镜像的启动命令 CMD python3 /opt/test_app.py “test_app.py” from flask import
使用WebSocket协议的方式访问在线服务 背景说明 WebSocket是一种网络传输协议,可在单个TCP连接上进行全双工通信,位于OSI模型的应用层。WebSocket协议在2011年由IETF标准化为RFC 6455,后由RFC 7936补充规范。Web IDL中的WebSocket
mpletions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Noteb
config.json # 请求的参数,根据实际启动的服务来调整 ├── mmlu_subject_mapping.json # 数据集配置 ├── ... ├── evaluators
py”),任务会在启动容器后执行。 config.yaml内容如下: apiVersion: apps/v1 kind: Deployment metadata: name: yourapp labels: app: infers spec: replicas: 1 selector:
4902 Access prohibited because the app-auth API was not associated with APIG app %s. APP认证接口未授权给所用的APP 请检查AppCode是否有权限访问指定服务 400 ModelArts.4903
mpletions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Noteb
mpletions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Noteb
服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息 │ ├── ceval_subject_mapping.json # ceval数据集学科信息 ├── evaluators │ ├──
com/ma-group/sdxl-train:0.0.1 步骤四 创建AI应用 在ModelArts的AI应用页面,进行AI应用创建。 图3 创建AI应用 填写如下参数信息。 名称:AI应用的名称,请按照实际应用名填写。 版本:版本描述,请按照实际填写。 元模型来源:注意此处选择“从容器镜像选择”。
训练作业worker的个数,最大值请从查询作业资源规格接口获取。 app_url 是 String 训练作业的代码目录。如:“/usr/app/”。应与boot_file_url一同出现,若填入model_id则app_url/boot_file_url和engine_id无需填写。
使用镜像创建AI应用 使用AI应用部署在线服务 WebSocket在线服务调用 上传镜像至容器镜像服务 将准备好的本地镜像上传到容器镜像服务(SWR)。 使用镜像创建AI应用 登录ModelArts管理控制台,进入“ AI应用”页面,单击“创建”,跳转至创建AI应用页面。 完成AI应用配置,部分配置如下:
训练作业worker的个数,最大值请从查询作业资源规格接口获取。 app_url 是 String 训练作业的代码目录。如:“/usr/app/”。应与boot_file_url一同出现,若填入model_id则app_url/boot_file_url和engine_id无需填写。
训练作业worker的个数。最大值请从查询作业资源规格接口返回的“max_num”值获取。 app_url 是 String 训练作业的代码目录。如:“/usr/app/”。应与boot_file_url一同出现,若填入model_id则app_url/boot_file_url和engine_id无需填写。
理工具pip已经存在。 C:\Users\xxx>pip --version pip **.*.* from c:\users\xxx\appdata\local\programs\python\python**\lib\site-packages\pip (python *.*)
应用场景 本节介绍ModelArts服务的主要应用场景。 大模型 支持三方开源大模型,实现智能回答、聊天机器人、自动摘要、机器翻译、文本分类等任务。 AIGC 提供AIGC场景化解决方案,辅助创作文案、图像、音视频等数字内容。 自动驾驶 实现车辆自主感知环境、规划路径和控制行驶。