检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
步骤4:创建AI应用 在训练作业详情页的右上角单击“创建AI应用”,进入创建AI应用页面。 也可以在ModelArts管理控制台,选择“资产管理 > AI应用”,在“自定义AI应用”页面,单击“创建”,进入创建AI应用页面。
获取方法请参见获取项目ID和名称。 表2 query请求参数 参数 是否必选 参数类型 说明 de_type 是 String 开发环境类型,当前仅支持Notebook,严格区分大小写。 provision_type 否 String 部署类型,当前仅支持Docker。
表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co
表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co
表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co
表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co
tools:描述可用的外部工具或功能的信息,这些工具可能被模型用来执行某些任务或获取更多信息。
表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co
installer="pip", # 安装方式,目前支持pip packages=packages # 依赖包集合, 定义格式参考下文关于packages的定义 ) dependencies.append
可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目,是一种针对结构化数据的模型自动训练应用,能够对结构化数据进行分类或者数据预测。可用于用户画像分析,实现精确营销。也可应用于制造设备预测性维护,根据设备实时数据的分析,进行故障识别。
INFO: Application startup complete.
# shell conda config --append envs_dirs /home/ma-user/work/envs/user_conda/ 查看现有的conda虚拟环境,此时新的虚拟环境已经能够正常显示,可以直接通过名称进行虚拟环境的切换。
训练过程中的迭代次数、LOSS和吞吐数据按照“迭代次数|loss|吞吐”格式记录在日志中,AI Gallery通过环境变量找到日志,从中获取实际数据绘制成“吞吐”和“训练LOSS”曲线,呈现在训练的“指标效果”中。具体请参见查看训练效果。
查询单个样本信息 GET /v2/{project_id}/datasets/{dataset_id}/data-annotations/samples/{sample_id} modelarts:sample:getSample obs:object:GetObject √ √ 获取样本搜索条件
迭代处理模型输出 for output_name, results in data.items(): for result in results: infer_output["mnist_result"].append
获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 collect_key_sample 否 Boolean 是否收集关键样本。
基于AIGC模型的GPU推理业务迁移至昇腾指导 场景介绍 迁移环境准备 pipeline应用准备 应用迁移 迁移效果校验 模型精度调优 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
目前其已在大模型训练推理、自动驾驶、AIGC、内容审核等领域广泛得到应用。
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。
此外,vLLM还具备投机推理和自动前缀缓存等关键功能,使其在学术界和工业界都得到了广泛应用。 Ascend-vLLM是华为云针对NPU优化的推理框架,继承了vLLM的优点,并通过特定优化实现了更高的性能和易用性。