检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/Edit Panel界面,填写如下参数。 Data source:已配置Grafana数据源; Metric:指标名称,可参考表1、表2、表3获取想要查询的指标; Labels:填写过滤该指标的标签,请参考表4。 图10 创建Dashboards查看指标 父主题: 使用Grafana查看AOM中的监控指标
添加。 仅支持16bit WAV格式音频文件,单个音频文件不能超过4MB,且单次上传的音频文件总大小不能超过8MB。 数据源同步:为了快速获取用户OBS桶中最新音频,单击“数据源同步”,快速将通过OBS上传的音频数据添加到ModelArts。 删除音频:您可以依次单击选中音频,或
际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink
ORIGINAL_HF_WEIGHT /home/ma-user/ws/llm_train/AscendFactory/model/llama2-70B 【必改】。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 OUTPUT_SAVE_DIR /home/ma-use
ORIGINAL_HF_WEIGHT /home/ma-user/ws/llm_train/AscendFactory/model/llama2-70B 【必改】。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 OUTPUT_SAVE_DIR /home/ma-use
bzip2 dh-python pkg-config dh-autoreconf python3-distutils debhelper make ./mlnxofedinstall --add-kernel-support 如果想安装其它更高版本的ib驱动,请参考Linux InfiniBand
进入我的Gallery 表1 我的Gallery列表介绍 模块列表 功能介绍 我的主页 展示个人的成长值数据。 成长值可以通过“签到”和发布资产获取,每天只能签到一次。 说明: 成长值相关数据和功能当前是Beta版本,在正式版本发布前可能会发生变化。 我的资产 > 算法 展示个人发布和订阅的算法列表。
本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Framework模块提供了OBS中常见的数据文件操作,如读写、列举、创建文件夹、查询、移动、复制、删除等。 在ModelArts Notebook中使用MoXing接口时,可直接调用接口,无需下载或安装SDK,使用限制比ModelArts SDK和OBS SDK少,非常便捷。 父主题: AI开发基础知识
单个manifest文件大小限制:5GB。 文本文件单行大小限制:100KB。 数据集标注结果文件大小限制:100MB。 前提条件 数据集功能需要获取访问OBS权限,在未进行委托授权之前,无法使用此功能。在使用数据集功能之前,请前往“权限管理”页面,使用委托完成访问授权。 已创建用于存储
本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
登录ModelArts控制台,左侧菜单选择“模型管理”; 单击“创建”,进入创建模型界面,元模型选择“从容器镜像中选择”,选择自定义镜像; 配置“容器调用接口”和端口号,端口号与模型配置文件中的端口保持一致; 设置完成后,单击“立即创建”,等待模型状态变为“正常”; 重新部署在线服务。 父主题:
起构建合作共赢的AI生态体系。 AI Gallery使用限制 目前自动学习产生的模型暂不支持发布到AI Gallery。 订阅或购买主要是获取AI资产的使用配额和使用权,支持在配额定义的约束下,有限地使用AI资产。 使用AI资产时,可能需要消耗硬件资源,硬件资源费用将根据实际使用
git-lfs-linux-arm64-v3.2.0.tar.gz git-lfs-3.2.0 通过git下载sd pytorch模型。 该模型用于获取模型shape,也可以转换生成onnx模型。后文中的modelarts-ascend仓库已经给出了模型shape,可以直接使用,onnx模型也可以单独下载。
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path