检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at
Turbo作为完全托管的共享文件存储系统,在本方案中作为主要的存储介质应用于训练作业。因此,后续需要准备的原始数据集、原始Hugging Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下: 将SFS Turbo挂载至ECS服务器后,可直接访问SFS
ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-use
ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-use
本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.910-xxx
本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx
ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-use
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
Turbo作为完全托管的共享文件存储系统,在本方案中作为主要的存储介质应用于训练作业。因此,后续需要准备的原始数据集、原始Hugging Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下: 将SFS Turbo挂载至ECS服务器后,可直接访问SFS
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx
ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-use
ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-use
ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-use
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理