检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
使用ModelArts Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注
本案例适用于华为云-北京四Region。 Notebook自定义镜像规范 制作自定义镜像时,Base镜像需满足如下规范: 基于昇腾、Dockerhub官网等官方开源的镜像制作,开源镜像需要满足如下操作系统约束: x86:Ubuntu18.04、Ubuntu20.04 ARM:Euler2.8.3、Euler2
Standard资源池节点故障定位 节点故障定位 对于Standard资源池,ModelArts平台在识别到节点故障后,通过给K8S节点增加污点的方式(taint)将节点隔离避免新作业调度到该节点而受到影响,并且使本次作业不受污点影响。当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障。
例,单击操作列的“打开”,访问JupyterLab。 进入JupyterLab页面后,自动打开Launcher页面,如下图所示。您可以使用开源支持的所有功能,详细操作指导可参见JupyterLab官网文档。 图1 JupyterLab主页 不同AI引擎的Notebook,打开后L
载地址:https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/tree/main 下载开源数据集并上传到宿主机上,官网下载地址:https://huggingface.co/datasets/lambdalabs/pokemon
ModelArts入门指引 本文旨在帮助您了解ModelArts的基本使用流程以及相关的常见问题,帮助您快速上手ModelArts服务。 面向不同AI基础的开发者,本文档提供了相应的入门教程,帮助用户更快速地了解ModelArts的功能,您可以根据经验选择相应的教程。 面向AI开
载地址:https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/tree/main 下载开源数据集并上传到宿主机上,官网下载地址:https://huggingface.co/datasets/lambdalabs/pokemon
3-cudnn8-ubuntu18.04:v1 . 容器镜像的大小建议小于15G,不能大于25G。否则镜像的迁移、拉起都会存在性能问题。 建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层
在ModelArts中图像分类和物体检测具体是什么? 图像分类是根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。简单的说就是识别一张图中是否
8B参数。MiniCPM-V2.0具有领先的光学字符识别(OCR)和多模态理解能力。该模型在综合性OCR能力评测基准OCRBench上达到开源社区的最佳水平,甚至在场景文字理解方面实现接近 Gemini Pro 的性能。 MiniCPM-V2.0值得关注的特性包括: 领先的 OCR
用于文本到视频生成。通过继承一个预训练的文本到图像模型CogView2,还提出了多帧速率分层训练策略,以更好地对齐文本和视频剪辑。作为一个开源的大规模预训练文本到视频模型,CogVideo性能优于所有公开可用的模型,在机器和人类评估方面都有很大的优势。 方案概览 本方案介绍了在M
Turbo作为完全托管的共享文件存储系统,在本方案中作为主要的存储介质应用于训练作业。因此,后续需要准备的原始数据集、原始Hugging Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下: 将SFS Turbo挂载至ECS服务器后,可直接访问SFS
使用img2dataset工具下载数据集。首先需要在容器安装img2dataset,安装命令如下。 pip install img2dataset 参考官方指导下载开源mscoco数据集。 #下载metadata wget https://huggingface.co/datasets/Christoph
2.2,单击Code按钮,通过Download ZIP下载ComfyUI源码到本地。 图1 下载ComfyUI源码 访问Github下载开源软件需要连通外网,请用户自行配置网络代理。 将下载好的ComfyUI-0.2.2.zip文件上传到容器的/home/ma-user/目录下,并解压。
方案优势 云端开发调试优势: 环境保持一致 配置一键完成 代码远程调试 资源按需使用 准备工作 下载VS Code IDE,下载路径:开源Visual Studio Code。根据不同的操作系统选择不同的安装包。 创建Notebook实例。 登录ModelArts控制台,单击左侧导航“开发环境
Transformer)架构,这是一种基于自注意力机制的神经网络模型,广泛用于自然语言处理任务,如文本生成、机器翻译和对话系统等。 DeepSpeed是开源的加速深度学习训练的库。它针对大规模的模型和分布式训练进行了优化,可以显著提高训练速度和效率。DeepSpeed提供了各种技术和优化策略,
r/lib/lib Step7 下载数据集 先创建文件夹用来存放数据集。 mkdir datasets cd datasets 训练使用的开源数据集链接:https://huggingface.co/datasets/LanguageBind/Open-Sora-Plan-v1.0
Cluster资源池节点故障如何定位 故障说明和处理建议 图1 Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点
训练日志失败分析 在ModelArts Standard中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。 ModelArts Standard提供了训练作业失败定位与分析功能,如果训练作业运行失败,ModelArts会自动识别导致作业失败的原因