检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分离部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
创建导入任务 功能介绍 创建数据集的导入任务:从存储系统导入样本、标签到数据集。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_
使用CES监控Lite Server资源 场景描述 Lite Server的监控能力依赖于CES云监控服务。本文主要介绍如何对接CES云监控服务,对Lite Server上的资源和事件进行监控。 监控方案介绍 监控概述请参考BMS官方文档。除文档所列支持的镜像之外,目前还支持Ubuntu20
查询训练作业版本列表 功能介绍 根据作业ID查看指定的训练作业版本。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String
Paraformer基于DevServer适配PyTorch NPU推理指导(6.3.911) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展Paraformer的推理过程。 约束限制 本方案目前仅适用于企业客户。
在Standard上部署SD WebUI推理服务 本文档主要介绍如何在ModelArts Standard的推理环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 完成在DevServer上部署SD WebUI推理服务章节的任务后,如果还需要在Mo
在Notebook中通过Dockerfile从0制作自定义镜像用于推理 场景说明 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为模型。 本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构
分离部署推理服务 本章节介绍如何使用vLLM 0.5.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
分离部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传
启动推理服务 本章节主要介绍大语言模型的推理服务启动方式,包括离线推理和在线推理2种方式。 离线推理 编辑一个python脚本,脚本内容如下,运行该脚本使用ascend-vllm进行模型离线推理。 from vllm import LLM, SamplingParams def
调用MaaS部署的模型服务 在ModelArts Studio大模型即服务平台部署成功的模型服务支持在其他业务环境中调用。 约束限制 只有“状态”是“运行中”的模型服务才支持被调用。 步骤1:获取API Key 在调用MaaS部署的模型服务时,需要填写API Key用于接口的鉴权认证。
创建数据集 功能介绍 创建数据集。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets 表1 路径参数 参数
使用自定义引擎在ModelArts Standard创建模型 使用自定义引擎创建模型,用户可以通过选择自己存储在SWR服务中的镜像作为模型的引擎,指定预先存储于OBS服务中的文件目录路径作为模型包来创建模型,轻松地应对ModelArts平台预置引擎无法满足个性化诉求的场景。 自定义引擎创建模型的规范
MiniCPM-V2.6基于DevServer适配PyTorch NPU训练指导(6.3.912) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对MiniCPM-V2.6进行LoRA微调及SFT微调。本文档中提供的训练脚本,是基于原生M
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过torch
自定义引擎创建模型规范 使用自定义引擎创建模型,用户可以通过选择自己存储在SWR服务中的镜像作为模型的引擎,指定预先存储于OBS服务中的文件目录路径作为模型包来创建模型,轻松地应对ModelArts平台预置引擎无法满足个性化诉求的场景。 ModelArts将自定义引擎类型的模型部
注册自定义镜像 功能介绍 将用户自定义的镜像注册到ModelArts镜像管理。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/images
在ECS上构建自定义镜像并在Notebook中使用 使用场景和构建流程说明 用户可以使用ModelArts提供的基础镜像或第三方的镜像来编写Dockerfile,在ECS服务器上构建出完全适合自己的镜像。然后将镜像进行注册,用以创建新的开发环境,满足自己的业务需求。 本案例将基于