检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Octopus全球基础设施围绕华为云区域和可用区构建。华为云区域提供多个在物理上独立且隔离的可用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。
Light)检测 红灯前行为检测的目的是判断主车在遇到红灯时能否在停止线前停车, 并且与停止线的距离保持在合理的范围。 判断能否在停止线前停车是指当主车前端超出停止线后, 主车速度大于零时, 则主车没能在停止线前停车。 这要排除主车在非箭头红绿灯右转的情况。 判断主车停车后距离停止线是否合理时,
可能会出现横向控制效果不佳导致的长时间车辆横向振荡。 蛇行检测的目的是判断车辆是否出现横向振荡,利用车辆的横向加速度的正负变化来判断蛇行是否发生。 正值大于和负值小于的比例都大于该时间段的10%时,则判断此时间段发生蛇行。 在及少数的连续S型弯道情况下,可能会出现假阳性结果,这会在评测报告中进行体现。
限速(Speeding)检测 限速检测的目的是判断主车的车速是否超过道路默认限速。 本设计采用最大默认限速120km/h。 该阈值可通过前端进行自定义配置。 父主题: 内置评测指标说明
减速度(Deceleration)检测 减速度检测的目的是: 判断主车在整个行驶过程中制动减速度是否超过对应的舒适性阈值。 本设计的减速度的默认阈值为3。 父主题: 内置评测指标说明
gen_scenario 否 String 泛化场景资源地址。通过该字段判断仿真场景是否由泛化场景导入,并关联到导入的泛化场景。 road_scenario 是 String 路采场景资源地址。通过该字段判断仿真场景是否由路采场景导入,并关联到导入的路采场景。 description
车头时距(Time Headway)检测 车头时距检测的目的是判断主车行驶过程中与其他交通车的车头时距是否台小。 车头时距是主车与引导车的相对距离除以主车的速度。 即使主车未发生碰撞, 当车头时距过小时(该阈值可用户自定义,本设计默认取2s), 发生碰撞的风险太大, 这样也是不合理的。
礼让行人(Polite To Pedestrian)检测 礼让行人检测的目的是判断当行人横穿马路时, 主车是否有礼让行为。 具体的礼让行为包括在行人横穿马路过程中, 进行停车已经停车距离要合适, 并且当行人离开车道后, 主车重新启动时间要合适。 其中停车距离允许用户自定义,本设计
创建场景文件 功能介绍 本接口用于创建仿真场景文件。平台会根据文件sha256值判断场景文件是否已存在,如果场景文件不存在,则返回预签链接用于上传场景文件。 URI POST /v2/{project_id}/sim/sm/scenarios/{parent_lookup_id}/files
审核操作指导 审核是检验标注任务质量的一个手段,审核的方式是从标注任务中抽取一定比例的图片,通过被抽取的图片标注准确率判断该标注任务整体准确率,该标注任务是否通过审核。 在左侧菜单栏中单击“标注服务 > 项目管理”。 选择“标注项目”页签,单击项目名称。 选择“批次任务列表”,单击批次任务前的。
访问方式封装成何种形式,其本质都是通过Octopus提供的REST风格的API接口进行请求。 Octopus的接口均需要进行认证鉴权以此来判断是否通过身份认证。通过控制台发出的请求需要通过Token认证鉴权,调用API接口认证鉴权支持Token认证和AK/SK认证两种方式。 访问控制
在路(On Road)检测 在路检测的目的是判断主车是否在可行驶的道路上驾驶。 根据OSI中车道类型定义,当主车行驶的道路类型为osi3.Lane.classification.type.TYPE_NONDRIVING,则认为主车在路检测不通过。 该指标关联的内置可视化时间序列数据为:暂无。
Cruise Control)的最大减速度,和AEB(Autonomous Emergency Braking)的最大减速度。 急刹检测的目的是判断主车在行驶过程中是否达到ACC和AEB的最大减速度。 ACC的最大减速度通常为。 AEB的最大减速度通常为。 该两项子指标关联的内置可视化时间序列数据均为:accX。
创建场景地图 功能介绍 此接口用于创建OpenDRIVE格式的场景地图。接口基于地图文件的sha256判断地图文件是否已存在,如果地图文件不存在,响应中提供预签链接用于上传地图文件。 URI POST /v2/{project_id}/sim/sm/maps 表1 路径参数 参数
是否减速响应检测 是否转向响应检测 其中是否碰撞检测判断该种碰撞是否发生,在碰撞发生的基础上,进一步地判断主车是否有提前响应的动作。 当主车有提前减速或者转向避让,但只是没能及时刹住,本设计认为这种情况比完全没有采取任何措施避免碰撞的表现要好。 是否响应的判断是基于碰撞发生时,主车是否制动减速或
逆行(Reverse Direction Driving)检测 逆行检测的目的是判断主车行驶过程中是否按车道规定的方向行驶。 根据OPNENDRIVE中对车道的lane id的定义, 沿着道路的reference line的前进方向, reference line右侧的lane id由0逐渐递减,左侧的lane
压实线(Onto Solid line)检测 压实线检测的目的是判断主车行驶过程中是否压到实线。 当主车与距离最近的车道线的小于主车宽度的一半时,并且该车道线的类型为OSI定义的osi3.LaneBoundary.classification.type.TYPESOLIDLINE,则认为主车的轮胎已经压到实线。
急转向(Steering)检测 侧向加速度过大会对车辆的侧倾稳定性和乘员体验造成不良影响,急转向检测的目的是判断主车在行驶过程中,侧向加速度是否过大。 侧向加速度的阈值设置为2.3 ,具体参考《i-vista评测规程》第5页最后一段。 该指标关联的内置可视化时间序列数据为:accY。
平稳起步(Gentle Start)检测 汽车起步时加速度太大会给人带来不舒适的感受。平稳起步检测的目的是判断自动驾驶车辆起步过程中加速度是否过大。 起步过程的判定是指车辆当前速度为0,并在0.5s后速度大于,这个0.5s内的时间段为起步过程。 起步过程中如果加速度大于一定阈值(
限速标志牌前限速(Speed Limit Sign)检测 限速标志牌前限速检测的目的是判断主车在行驶过程中遇到限速标志牌时, 速度是否符合要求。 限速标志牌分为最高限速和最低限速两种。 最高限速是指主车速度不能高于对应的限速数值, 并且不能低于最高限速的75%。 最低限速是指主车速度不能低于对应的限速数值。