检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当前ModelArts支持如下格式的数据集。 图片:对图像类数据进行处理,支持 .jpg、.png、.jpeg、.bmp四种图像格式,支持用户进行图像分类、物体检测、图像分割类型的标注。 音频:对音频类数据进行处理,支持.wav格式,支持用户进行声音分类、语音内容、语音分割三种类型的标注。 文本:对文本类数据进行处理,支持
模型训练、模型评估等场景。主要应用场景如下: 当需要对图像进行增强,对语音进行除噪等操作时,可以使用该节点进行数据的预处理。 对于一些物体检测,图像分类等模型场景,可以根据已有的数据使用该节点进行模型的训练。 属性总览 您可以使用JobStep来构建作业类型节点,JobStep结构如下
参数设置情况。 启动探针:用于检测应用实例是否已经启动。如果提供了启动探针(startup probe),则禁用所有其他探针,直到它成功为止。如果启动探针失败,将会重启实例。如果没有提供启动探针,则默认状态为成功Success。 就绪探针:用于检测应用实例是否已经准备好接收流量。
xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决? 问题现象 原因分析 当前本地网络原因,导致远程自动安装VS Code Server时间过长。 解决方法 打开VS Code,选择“Help>About”,并记下“Commit”的ID码。
练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。 为提升训练效果,建议在增量训练时,选择质量较高的数据,提升数据标注的质量。 增量训练的操作步骤 登录
的数据集可直接在ModelArts控制台数据集列表中显示。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
xxx: Downloading VS Code Server locally"超过10分钟以上,如何解决? 问题现象 原因分析 当前本地网络原因,导致远程自动安装VS Code Server时间过长。 解决方法 打开VS Code,选择“Help>About”,并记下“Commit”的ID码。
只有“图片”的数据集,且版本标注类型为“物体检测”和“图像分类”的数据集版本支持数据特征分析。 只有发布后的数据集支持数据特征分析。发布后的Default格式数据集版本支持数据特征分析。 数据特征分析的数据范围,不同类型的数据集,选取范围不同: 对于标注任务类型为“物体检测”的数据集版本,当已标注样
在本地PC的hosts文件中配置域名和IP地址的对应关系。 三、网络代理设置 如果用户使用的网络有代理设置要求,请检查代理配置是否正确。也可以使用手机热点网络连接进行测试排查。 检查代理配置是否正确。 图2 PyCharm网络代理设置 四、AK/SK不正确 获取到的AK/SK信息不正确
ModelArts Standard自动学习案例 表1 自动学习样例列表 样例 对应功能 场景 说明 口罩检测 自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI
odelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能当前仅支持“图像分类”、“物体检测”、“文本分类”、“命名实体”、“文本三元组”、“语音分割”类型的数据集。 针对启用团队标注功能的数据标注任务,支持创建团队标注任务,将标
添加图片时,图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。
查询OS的配额 功能介绍 获取ModelArts OS服务中部分资源的配额,如资源池配额、网络配额等。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1
可以参考本章节使用MoXing Framework的一些进阶用法。 读取完毕后将文件关闭 当读取OBS文件时,实际调用的是HTTP连接读取网络流,注意要记得在读取完毕后将文件关闭。为了防止忘记文件关闭操作,推荐使用with语句,在with语句退出时会自动调用mox.file.File对象的close()方法:
是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本
表2 响应Body参数 参数 参数类型 描述 networkCidrs Array of strings 网络配置项。 networkQuota Integer 用户可创建网络个数配额。 poolQuota Integer 用户可创建资源池个数配额。 pooHighAvailable
于以下原因导致nvidia-fabricmanager.service不工作: 可能系统资源不足、如内存不足、内存泄露。 硬件故障、如IB网络或者GPU互联设备故障等。 没安装nvidia-fabricmanager组件或被误卸载。 处理方法 若未安装fabricmanager,则需安装改组件。
重复打印日志“INFO:root:Listing OBS”。 原因分析 复制数据慢的可能原因如下: 直接从OBS上读数据会造成读数据变成训练的瓶颈,导致迭代缓慢。 由于环境或网络问题,读OBS时遇到读取数据失败情况,从而导致整个作业失败。 重复打印日志,该日志表示正在读取远端存在的文件,当文件列表读取完成以后,开始
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管理中
数据标注 物体检测图片标注,一张图片是否可以添加多个标签? 在物体检测作业中上传已标注图片后,为什么部分图片显示未标注? 父主题: Standard自动学习