检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。
使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决? 问题现象 MobaXterm成功连接到开发环境后,过一段时间会自动断开。 可能原因 配置MobaXterm工具时,没有勾选“SSH keepalive”或专业版MobaXterm工具的“Stop server
安装Gallery CLI配置工具 场景描述 Gallery CLI配置工具支持将AI Gallery仓库的资产下载到云服务端,便于在云服务本地进行训练、部署推理。 Gallery CLI配置工具支持将单个超过5GB的文件从本地上传至AI Gallery仓库中。 约束限制 Gallery
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。
Turbo存储。 在ECS中已经创建ma-user和ma-group用户,请参考在ECS中创建ma-user和ma-group。 已经安装obsutil,请参考下载和安装obsutil。 参考线下容器镜像构建及调试章节,构建容器镜像并调试,镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。
以Linux x86_64架构的操作系统为例,获取Docker安装包。您可以执行以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。
“添加模型说明”,设置“文档名称”及其“URL”。模型说明最多支持3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 确认信息填写无误,单击“立即创建”,完成模型的创建。
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
以Linux x86_64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh
G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资
(可选)本地安装ma-cli 使用场景 本文以Windows系统为例,介绍如何在Windows环境中安装ma-cli。 Step1:安装ModelArts SDK 参考本地安装ModelArts SDK完成SDK的安装。 Step2:下载ma-cli 下载ma-cli软件包。 完成软件包签名校验。
/configs/swin/swin_base_patch4_window7_224_22k.yaml --local_rank 0 多机多卡运行脚本: # 创建run.sh #!/bin/bash # 从obs中下载数据到本地SSD盘 DIS_DATA_PATH=/cache SRC_DATA_PATH=${
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。
如何在Notebook中安装外部库? ModelArts Notebook中已安装Jupyter、Python程序包等多种环境,包括TensorFlow、MindSpore、PyTorch、Spark等。您也可以使用pip install在Notobook或Terminal中安装外部库。 在Notebook中安装
镜像构建及调试与单机单卡相同。 具体操作,请参考线下容器镜像构建及调试。 上传镜像 请参考单机单卡训练的上传镜像章节操作。 父主题: 多机多卡
b可以安装插件吗? Jupyter可以安装插件。 目前jupyter插件多数采用wheel包的形式发布,一次性完成前后端插件的安装,安装时注意使用jupyter服务依赖的环境“/modelarts/authoring/notebook-conda/bin/pip”进行安装,不要使
SDK不支持进行训练作业调测、模型调试和在开发环境中部署本地服务进行调试,当前仅支持在开发环境Notebook中调试。 本地安装ModelArts SDK步骤 在本地安装ModelArts SDK,具体的配置步骤如下: 步骤一:下载ModelArts SDK 步骤二:配置运行环境 步骤三:安装ModelArts SDK
推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI) Open-Clip模型昇腾适配 SD1.5 Finetune高性能训练 moondream2推理适配昇腾
cudaGetDeviceCount() 原因分析 经过对裸金属服务器排查,发现nvidia-drvier和cuda都已安装,并且正常运行。nvidia-fabricmanager服务可以使单节点GPU卡间互联,在多卡GPU机器上,出现这种问题可能是nvidia-fabricmanger异常导致。 执行以下命