检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看训练作业资源占用情况 约束限制 训练作业的资源占用情况系统会自动保存30天,过期会被清除。 如何查看训练作业资源使用详情 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改动任何参数。 如果要使用自动重启功能,资源规格必须选择八卡规格。 注:训练作业中的训练故障自动恢复功能包括:
在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改动
在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改动
--seq-length:要处理的最大seq length。 --workers:设置数据处理时,要执行的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件
创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。
通过华为云CloudIDE服务,用户创建一个可以对接到华为云ModelArts服务的开发环境,通过环境内的ModelArts SDK,实现快速开发、训练、部署、验证自己的第一个AI模型服务。
通过华为云CloudIDE服务,用户创建一个可以对接到华为云ModelArts服务的开发环境,通过环境内的ModelArts SDK,实现快速开发、训练、部署、验证自己的第一个AI模型服务。
高性能的全文识别和高阶结构化识别能力。 文字识别(Optical Character Recognition,简称OCR)提供在线文字识别服务,将图片、扫描件或PDF、OFD文档中的文字识别成可编辑的文本。支持通用类识别、证件类识别、票据类识别、行业类识别和智能文档解析,具备高精
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-
行情感标注。 确保标注的一致性和准确性。 模型选择: 选择合适的模型架构,如RNN、LSTM、GRU或基于变换器的模型(如BERT、GPT)。 考虑到情感生成的需求,可能需要选择能够捕捉长距离依赖和上下文信息的模型。 模型训练: 将预处理后的数据输入到模型中。 使用情感标签作为监督信号,训练模型学习文本到情感的映射。
上传模板图片 在使用单模板工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪张图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传某一格式的发票图片作为模板,训练的文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。
String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 get_job_log请求参数说明 参数 是否必选 参数类型 描述 task_id 否 String 要查看哪个工作节点的日志,
操作流程 模型训练服务操作流程如操作流程图所示。 图1 操作流程图 父主题: 使用模型训练服务快速训练算法模型
用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGI