检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
state to waiting. 等待资源释放后重试。 异常 xxx资源不足,服务调度失败。补充信息:xxx %s %s Schedule failed due to insufficient resources. Retry later. %s nodes are available:
在线服务鉴权 功能介绍 计费工作流在线服务鉴权。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/workflows/service/auth
部署模型为在线服务 AI应用准备完成后,您可以将AI应用部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的AI应用。 由于在线运行需消耗资源,确保账户未欠费。 操作步骤
动态加载”。AI引擎的值是系统自动写入的,无需设置。 图5 设置元模型来源 在AI应用列表页面,当AI应用状态变为“正常”时,表示AI应用创建成功。单击AI应用操作列的“部署”,弹出“版本列表”,单击操作列“部署>在线服务”,将AI应用部署为在线服务。 图6 部署在线服务 在“部
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
如果您选择的是http,但镜像里面实际提供的是https,也会遇到类似错误。 您可以创建一个新的AI应用版本,选择正确的协议(http或者https),重新部署在线服务或更新已有在线服务。 请求预测时间过长 报错:{"error_code": "ModelArts.4503", "error_msg":
在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 问题现象 在线服务启动后,当在线服务进入到“运行中”状态后,进行预测,预测请求发出后,收到的响应不符合预期,无法判断是不是模型的问题导致的不符合预期。 原因分析 在线服务启动后,ModelArts提供两种方式的预测:
已在云监控页面设置告警规则,具体操作请参见设置告警规则。 在线服务已正常运行一段时间(约10分钟)。 对于新创建的在线服务,需要等待一段时间,才能查看上报的监控数据和监控视图。 故障、删除状态的在线服务,无法在云监控中查看其监控指标。当在线服务再次启动或恢复后,即可正常查看。 对接云监控之前,
部署的在线服务状态为告警 问题现象 在部署在线服务时,状态显示为“告警”。 解决方法 使用状态为告警的服务进行预测,可能存在预测失败的风险,请从以下4个角度进行排查,并重新部署。 后台预测请求过多。 如果您使用API接口进行预测,请检查是否预测请求过多。大量的预测请求会导致部署的在线服务进入告警状态。
部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内部存在同名包,
在线服务处于运行中状态时,如何填写推理请求的request header和request body 问题现象 部署在线服务完成且在线服务处于“运行中”状态时,通过ModelArts console的调用指南tab页签可以获取到推理请求的地址,但是不知道如何填写推理请求的header及body。
创建在线服务包 功能介绍 计费工作流购买资源。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/workfl
在线服务预测报错DL.0105 问题现象 在线服务预测报错DL.0105,报错日志:“TypeError:‘float’object is not subscriptable”。 原因分析 根据报错日志分析,是因为一个float数据被当做对象下标访问了。 处理方法 将模型推理代码
在线服务预测报错ModelArts.4206 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,报错“ModelArts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts
ppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts
在线服务预测报错ModelArts.4302 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4302。 原因分析及处理方法 服务预测报错ModelArts.4302有多种场景,以下主要介绍两种场景: "error_msg":
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
标注多个标签,是否可针对一个标签进行识别? 数据标注时若标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: Standard数据管理
情况配置健康检查。 图1 AI应用配置参数 单击“立即创建”,进入AI应用列表页,等AI应用状态变为“正常”,表示AI应用创建成功。 使用AI应用部署在线服务 登录ModelArts管理控制台,进入“模型部署 >在线服务”页面,单击“部署”,跳转至在线服务部署页面。 完成服务的配置,部分配置如下:
部署在线服务出现报错No CUDA runtime is found 问题现象 部署在线服务出现报错No CUDA runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is