检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
DAG图显示了“psi + 同态”的全过程流向,基本符合业界已公开的PSI算法流程和同态加密流程。 图2 加密流程 图3 加密流程 父主题: 可验证代码示例
DAG图显示了“psi + 秘密分享”的全过程流向,基本符合业界已公开的PSI算法流程和秘密分享流程。 图2 加密流程 图3 加密流程 父主题: 基于TICS实现端到端的企业积分查询作业
创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用TICS可信联邦学习进行联邦建模
至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模
TRAIN(训练),EVALUATE(评估)。 hfl_platform_type 否 String 联邦学习运行平台枚举值。
企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
创建数据预处理作业 数据预处理是训练机器学习模型的一个重要前置步骤,其主要是通过转换函数将特征数据转换成更加适合算法模型的特征数据过程。
使开启算法保护的计算差值与预期得到的实际差值274不同,避免真实数据被窃取。
使开启算法保护的计算差值与预期得到的实际差值274不同,避免真实数据被窃取。
计算节点以容器的形式部署,支持云容器引擎(CCE,Cloud Container Engine)服务和智能边缘平台(IEF,Intelligent EdgeFabric)服务部署,用户可根据数据上云的实际需求,采用合适的计算节点部署方案。
参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。 最终将计算完成的结果加密返回给作业发起方。 空间的整体配置通过空间管理员进行统一管理。 父主题: 多方安全计算场景
1.TRAIN训练,2.EVALUATE评估 hfl_platform_type String 联邦学习运行平台枚举值。
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
约束限制 纵向联邦作业XGBoost算法只支持两方参与训练。 训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。
常规配置:通过界面点选算法使用的常规参数,具体支持的参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。
1.TRAIN训练,2.EVALUATE评估 hfl_platform_type String 联邦学习运行平台枚举值。
计算节点以容器的形式部署,支持云容器引擎(CCE,Cloud Container Engine)服务和智能边缘平台(IEF,Intelligent EdgeFabric)服务部署,用户可根据数据上云的实际需求,采用合适的计算节点部署方案。
运行作业前,提示“Privacy rule verification failed”,怎么处理? 当在作业编辑页面编写SQL语句,并试图运行时,右上角提示“Privacy rule verification failed”。 原因是SQL语句中存在使用隐患字段的情况。
执行联邦学习作业时,报“ERROR UNAVAILABLE:Network closed for unknown reason”,如何解决?
优势: 原始数据不出企业安全域、不出库,实现“数据不动、算法动”,数据使用自主可控。 联合多方正样本的效果,丰富模型的特征,提高模型的泛化能力。 计算全程保障企业数据安全与个人隐私。