检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
盘古自然语言大模型的适用场景有哪些 自然语言处理大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模
配置多轮对话能力(Python SDK) 支持上下文记忆的多轮对话。 初始化 from pangukitsappdev.skill.conversation_skill import ConversationSkill from pangukitsappdev.api.llms.factory
llms.llm_config import LLMParamConfig # 不带参数的问答 skill.execute({"subject": "哈士奇", "count": 20}) # 带参数的问答 llm_param_config = LLMParamConfig(temperature=0
添加Agent流式输出(Java SDK) Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback
@Tool说明: name。工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 description。工具的描述,建议为中文,尽可能的简短描述工具。 principle。何时使用该工具,为重要参数,该描述直接影响LLM对工具使用的判断,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
SDK) Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。 文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev
配置多轮对话能力(Java SDK) 支持上下文记忆的多轮对话。 初始化。 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs; import com.huaweicloud.pangu.dev.sdk.api.skill.Skills;
模型,并因此获得更好的结果。提示词主要包含以下要素: 指令:想要模型执行的特定任务或指令。如总结、提取、生成等。 上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。 输入数据:用户输入的内容或问题。 输出指示:指定输出的类型或格式。 提示词所需的格式取决于您想要语言
高质量的提示词,可以将提示词发布至“提示词管理”中。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。 图1 提示词工程 勾选所需的提示词,并单击“保存到模板库”。
大模型在训练时使用的是静态的文本数据集,这些数据集通常是包含了截止到某一时间点的所有数据。因此,对于该时间点之后的信息,大模型可能无法提供。 通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,并将这些信息整合到大模型生成的答案中,从而提供既准确又及时的答案。
前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调
通过一站式流程,完成从数据集准备、模型训练、压缩、部署到调用和迁移,全面掌握盘古大模型的开发过程。同时,结合应用开发的提示词工程、Agent开发以及盘古应用开发SDK,您将能够高效构建智能应用,充分释放盘古大模型的潜力,为业务创新提供强大支持。 数据工程 使用数据工程准备与处理数据集 模型开发
AI助手是一种基于NLP大模型构建的人工智能应用,它通过结合多种工具并利用大模型的对话问答、规划推理、逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的API接口定义为一
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集
盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 使用主账号登录盘古大模型套件平台。 在左侧菜单选择“平台管理 > 授权管理”,单击右上角“一键授权”进行授权。
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答数据、检索增强问答数据和其他特定的指令任务数据等类型。 构造特定Prompt格式的数据。通过编写代码对数据进行处理,生成所需的带有Prompt格式的数据,保存成JSON文件。 低质量SFT数据过滤。包括
打分模式:当前版本打分模式仅支持基于规则,用户不可选,且暂无人工打分。基于规则打分:使用预置的相似度或准确率打分规则对比模型生成结果与真实标注的差异,从而计算模型指标。 评估数据: 选择已创建并发布的评估数据集。 基本信息: 输入任务的名称和描述。 单击“立即创建”,创建一个模型评估任务。 父主题: 评估盘古大模型