检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例: 1. python ExcelToJson.py --user_id=001 --excel_addr=xxx.xlsx(.csv)
timed out”提示,不显示详细的构建日志。 处理方法 预先准备需要编译下载的依赖包,减少依赖包下载和编译的时间。可通过线下wheel包方式安装运行环境依赖。线下wheel包安装,需确保wheel包与模型文件放在同一目录。 优化模型代码,提高构建模型镜像的编译效率。 父主题: 模型管理
打通VPC为打通SFS Turbo所在VPC和专属资源池网络,打通步骤请见打通VPC章节。 - 关联SFS Turbo:如果SFS Turbo为HPC型的文件系统,可使用关联SFS Turbo功能,具体操作请参见配置ModelArts和SFS Turbo间网络直通。 选择多挂载时请勿设置存在冲突的
指标命名空间。可选值如下: PAAS.CONTAINER:组件指标、实例指标、进程指标和容器指标的命名空间 PAAS.NODE: 主机指标、网络指标、磁盘指标和文件系统指标的命名空间 PAAS.SLA:SLA指标的命名空间 PAAS.AGGR:集群指标的命名空间 CUSTOMMETRICS:默认的自定义指标的命名空间
卡死检测时间。在这段时间内IO无变化则判定为任务卡死。 取值范围:10~720 单位:分钟 默认值:30 “30” 如何查看训练环境变量 在创建训练作业时,“启动命令”输入为“env”,其他参数保持不变。 当训练作业执行完成后,在训练作业详情页面中查看“日志”。日志中即为所有的环境变量信息。 图1 查看日志
235:20202/jobmng/custom-cpu-base:1.0”。 user_command 否 String 自定义镜像训练作业的自定义镜像的容器的启动命令。形式为:“bash /home/work/run_train.sh python /home/work/user-job-dir/app/train
算法的代码启动文件,需要在代码目录下。如:“/usr/app/boot.py”。应与code_dir一同出现。 command 否 String 自定义镜像算法的容器启动命令。 parameters 否 Array of Parameters objects 算法的运行参数。 inputs 否 Array of
算法的代码启动文件,需要在代码目录下。如:“/usr/app/boot.py”。应与code_dir一同出现。 command 否 String 自定义镜像算法的容器启动命令。 parameters 否 Array of Parameters objects 算法的运行参数。 inputs 否 Array of
rc2-py_3.9-euler_2.10.7-aarch64-snt9b-20240727152329-0f2c29a PyPI 程序包 Yum 软件包 mindspore 2.3.0 mindspore-lite 2.3.0 mindinsight 2.3.0 mindarmour
Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明:
Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明:
NPU对应的接口,请参考昇腾手工迁移文档进行操作。 常见问题 如何检测当前的torch_npu是否正确安装? 您可以使用如下的python命令在对应的运行环境中初步校验torch_npu是否正常安装。 python3 -c "import torch;import torch_npu;print(torch_npu
1/bin/python, python 3.7.10 三方包安装路径:/home/ma-user/anaconda3/envs/TensorFlow-2.1/lib/python3.7/site-packages 部分pip安装包列表: Cython
alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的AK和SK进行签名验证,确保通过授权的账号才能访问指定的OBS资源。
软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 插件代码包 AscendCloud-3rdAIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E
全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特定领域的数据增强
意事项? 镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么? 如何保证自定义镜像能不因为超过35G而保存失败? 如何减小本地或ECS构建镜像的目的镜像的大小? 镜像过大,卸载原来的包重新打包镜像,最终镜像会变小吗? 在ModelAr
云上迁移适配故障 无法导入模块 训练作业日志中提示“No module named .*” 如何安装第三方包,安装报错的处理方法 下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错
oject_dir”加入到“sys.path”中解决该问题。 使用from module_dir import module_file来导包,代码结构如下: project_dir |- main.py |- module_dir | |- __init__.py | |- module_file
则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例: 1. python ExcelToJson.py --user_id=001 --excel_addr=xxx.xlsx(.csv)