检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SFT全参微调权重转换 支持HuggingFace格式权重转换为Megatron格式后再进行SFT全参微调。本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练。 HuggingFace权重转换操作
SFT全参微调权重转换 增量训练前需将HuggingFace格式权重转换为Megatron格式后再进行SFT全参微调。 本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练。
SFT微调权重转换 微调训练前需将HuggingFace格式权重转换为Megatron格式后再进行SFT微调训练。 本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT微调和LoRA微调训练。
SFT全参微调权重转换 SFT全参微调需将HuggingFace格式权重转换为megatron格式后再进行SFT全参微调。 本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比
如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标注对象和标注文件存储在同一目录,并且一一对应,例如标注对象文件名为“10.jpg”,那么标注文件的文件名应为“10.txt”。 数据文件存储示例: ├─<dataset-import-path> │
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比
从MRS导入数据到ModelArts数据集 ModelArts支持从MRS服务中导入存储在HDFS上的csv格式的数据,首先需要选择已有的MRS集群,并从HDFS文件列表选择文件名称或所在目录,导入文件的列数需与数据集schema一致。MRS的详细功能说明,请参考MRS用户指南。
执行导出操作。 “数据来源”:选择OBS。 “保存路径”:即导出数据存储的路径。建议不要将数据存储至当前数据集所在的输入路径或输出路径。 图1 导出到OBS 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。 在“数据集概览页”,单击右上角“导出历史”,在弹出的“任务
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比
BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比
在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。 订阅并使用AI案例 登录“AI Gallery”。 选择“案例库”,在下拉框中单击“案例库 >”,进入AI案例库首页,该页面展示了所有共享的案例。
进而完成将运行的实例环境以容器镜像的方式保存下来。镜像保存后,默认工作目录是根目录“/”路径。 保存的镜像中,安装的依赖包不丢失,持久化存储的部分(home/ma-user/work目录的内容)不会保存在最终产生的容器镜像中。VS Code远程开发场景下,在Server端安装的插件不丢失。
进而完成将运行的实例环境以容器镜像的方式保存下来。镜像保存后,默认工作目录是根目录“/”路径。 保存的镜像中,安装的依赖包不丢失,持久化存储的部分(home/ma-user/work目录的内容)不会保存在最终产生的容器镜像中。VS Code远程开发场景下,在Server端安装的插件不丢失。
如何处理使用opencv.imshow造成的内核崩溃? 问题现象 当在Notebook中使用opencv.imshow后,会造成Notebook崩溃。 原因分析 opencv的cv2.imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。
OBS会产生费用。存储资源包括数据存储到OBS的计费。具体内容如表1所示。 表1 存储计费项 计费项 计费项说明 适用的计费模式 计费公式 存储资源 对象存储OBS 用于存储训练和推理的输入数据和输出结果数据。具体费用可参见对象存储价格详情。 注意: 存储到OBS中的数据需在O
剪枝 什么是剪枝 剪枝是一种大模型压缩技术的关键技术,旨在保持推理精度的基础上,减少模型的复杂度和计算需求,以便大模型推理加速。 剪枝的一般步骤是:1、对原始模型调用不同算法进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。
剪枝 什么是剪枝 剪枝是一种大模型压缩技术的关键技术,旨在保持推理精度的基础上,减少模型的复杂度和计算需求,以便大模型推理加速。 剪枝的一般步骤是:1、对原始模型调用不同算法进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。
基于MindSpore Lite的模型转换 迁移推理业务的整体流程如下: 模型准备 转换关键参数准备 模型转换 推理应用适配 主要通过MindSpore Lite(简称MSLite)进行模型的转换,进一步通过MindSpore Runtime支持昇腾后端的能力来将推理业务运行到昇腾设备上。