检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练后的模型需要“在线部署”且状态为“运行中”时,才可以使用本章节提供的方法进行调测,具体步骤请参见部署为在线服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让模型依据要求写邮件、做摘要总结、生成观点见解等。
在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。
开通盘古大模型服务 配置授权/创建子用户 配置盘古访问OBS服务权限,多用户使用平台情况下需要创建子用户。 配置盘古访问授权 创建子用户并授权使用盘古 准备训练数据 创建一个新的数据集 创建一个新的数据集,用来管理上传至平台的训练或者评测数据。
Prompt(提示词模板) 提示词模板模块提供模板格式化、自定义配置管理功能。
模型开发套件 模型开发套件是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。该套件具备模型管理、训练、评估、压缩、部署、推理和迁移等功能,支持模型的自动化评估,确保模型的高性能和可靠性。
Prompt(提示词模板) 提示词模板模块提供模板格式化、自定义配置、few-shot管理功能。
自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j public class CustomLLM extends AbstractLLM<
图4 扩容模型推理资产 不同类型的模型在部署时,做占用的推理资产数量存在差异,部署模型时所占的推理资产数量与模型类型关系如下。 表1 部署模型 模型类型 推理资产占有数量 盘古-NLP-N1 系列模型 部署1实例占用0.125个推理单元。
图2 创建训练数据集 进入训练数据集页面后,需要进行训练配置、数据配置和基本配置。 训练配置 选择模型类型、训练类型以及基础模型。 数据配置 选择训练数据集和配比类型,设置训练数据集配比,详情请参考数据配比功能介绍。
公测 模型的基础信息 2 模型部署相关 盘古-NLP-N2-基础功能模型-32K模型,LoRA微调后支持4K部署。 公测 部署为在线服务
AI助手 什么是AI助手 配置AI助手工具 配置知识库 创建AI助手 调测AI助手 调用AI助手API
如上例所示,当前的module-version需要配置为“N2_agent_v2”,模型的相关配置需要改为Pangu-NLP-N2-Agent-L0.C模型的地址。 with_prompt参数配置为True,prompt的拼接由Agent托管处理。
模型推理资产即部署模型所需的cpu、gpu资源(专属资源池)。如果不订购推理资产,可以使用订购的盘古模型进行训练,但无法部署训练后的模型。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即购买”,平台将为您提交购买权限申请。
包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。 图2 任务详情 评估报告: 任务状态为“已完成”时,查看评估报告。评估报告中包含困惑度、评估概览以及模型结果分析。
历史关键信息抽取 历史关键信息功能允许您在创建AI助手时,配置一些被认为是重要的参数。当 AI助手在运行过程中遇到这些配置的参数时,它将抽取这些参数的取值与描述,并将这些信息记录到当前对话中。通过历史关键信息可以增强模型的理解和回答能力。
其中,路径选中部分即为模型的部署ID(deployment_id)。 图3 获取API请求地址 父主题: 附录
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。
为什么微调后的模型,回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。
模型压缩任务完成后,可以使用压缩后的模型进行部署操作。
为什么微调后的模型,回答总是在重复某一句或某几句话 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。