检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LLamaFactory PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导 LLM开源大模型基于Lite Cluster适配PyTorch
LLamaFactory PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导 LLM开源大模型基于Lite Cluster适配PyTorch
LLamaFactory PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导 LLM开源大模型基于Lite Cluster适配PyTorch
训练完成后,您可以在预测分析节点中单击查看训练详情,如“标签列”和“标签列数据类型”、“准确率”、“评估结果”等。 该示例为二分类的离散型数值,评估效果参数说明请参见表1。 不同类型标签列数据产生的评估结果说明请参见评估结果说明。 图1 模型评估报告 同一个自动学习项目可以训练多次,每次训练会
llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
ModelArts提供了命令方式将用户的自定义指标上报保存到AOM。 约束与限制 ModelArts以10秒/次的频率调用自定义配置中提供的命令或http接口获取指标数据。 自定义配置中提供的命令或http接口返回的指标数据文本不能大于8KB。 命令方式采集自定义指标数据 用于
llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“AI应用”。 在“创建AI应用”页面配置参数。 表1 创建AI应用 参数 是否必填 说明 AI应用英文名称 是 自定义一个易于分辨的AI应用英文名称。 只能以数字、大小字母、下划线组成,且字符长度在3到90之间。
作空间列表。 在工作空间列表,单击操作列的“修改”进入修改工作空间页面。 支持修改工作空间的名称、描述、企业项目和授权类型,各参数说明请参见表2。 参数修改完成后,单击“立即修改”完成工作空间的修改。 删除工作空间 当不需要使用工作空间时,支持删除工作空间。工作空间删除后会默认清
如果使用的是专业版的MobaXterm工具,请执行步骤3。 如果使用的是专业版的MobaXterm工具,请参考图3 设置“Stop server after”,此参数默认值为360s,将其设置为3600s或更大值。 图3 设置“Stop server after” 父主题: VS Code连接开发环境失败故障处理
Code官网排查方式https://code.visualstudio.com/docs/remote/troubleshooting 小技巧(按需调整远端连接的相关参数): "remote.SSH.connectTimeout": 10, "remote.SSH.maxReconnectionAttempts":
文档中新增对Llama3支持长序列文本(sequence_length > 32k)训练内容,例如新增参数context-parallel-size。 文档中针对数据集预处理时,handler-name参数的说明,新增不同handler对训练数据的拼接和推理prompt的构造等说明。 训练支持的模型列表
单击资源池名称,进入资源池详情。 单击左侧“AI组件管理 > AI诊断”。 单击“诊断”,选择“日志上传路径”和NCCL Test节点,其余参数可保持默认值或根据实际需求修改。 测试使用的最大数据:取值范围[1, 1024],单位可选为“B”、“KB”、“MB”、“GB”“TB”。
构建新镜像: docker build -t <镜像名称>:<版本名称> . 如无法访问公网则需配置代理,增加`--build-arg`参数指定代理地址确保访问公网。 docker build --build-arg "https_proxy=http://xxx.xxx.xxx
构建新镜像: docker build -t <镜像名称>:<版本名称> . 如无法访问公网则需配置代理,增加`--build-arg`参数指定代理地址确保访问公网。 docker build --build-arg "https_proxy=http://xxx.xxx.xxx
出现该错误,是因为模型报错太多。当模型报错太多时,会触发dispatcher的熔断机制,导致预测失败。建议您检查模型返回结果,处理模型报错问题,可尝试通过调整请求参数、降低请求流量等方式,提高模型调用的成功率。 父主题: 服务预测