检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
Gallery CLI配置工具指南 安装Gallery CLI配置工具 使用Gallery CLI配置工具下载文件 使用Gallery CLI配置工具上传文件 父主题: AI Gallery(新版)
执行,可以在下方的Terminal中看到代码输出信息。 如果执行较长时间的训练作业,建议使用nohup命令后台运行,否则SSH窗口关闭或者网络断连会影响正在运行的训练作业,命令参考: nohup your_train_job.sh > output.log 2>&1 & tail
镜像”下,选择未发布的镜像,单击镜像名称,进入镜像详情页。 在镜像详情页,单击右侧“发布”,在发布镜像页面编辑发布信息后,单击“发布”。 表1 发布镜像的参数说明 参数名称 说明 中文名称 镜像发布后显示的名称,在创建镜像时设置的名称,此处不可编辑。 描述 必填项,填写资产简介,镜像发布后将显示在镜像页签上,方便用户快速了解资产。
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910)
执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
训练脚本说明参考 训练参数配置说明【旧】 训练tokenizer文件说明 断点续训和故障快恢说明 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
成的训练版本,在此版本基础上进行增量训练。其他参数请根据界面提示填写。 设置完成后,单击“确定”,即进行增量训练。系统将自动跳转至“模型训练”页面,待训练完成后,您可以在此页面中查看训练详情,如“训练精度”、“评估结果”、“训练参数”等。 图1 选择增量训练版本 父主题: Standard自动学习
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
# 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细
训练脚本说明参考 训练参数配置说明【旧】 训练tokenizer文件说明 断点续训和故障快恢说明 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909)
Server提供不同型号的xPU裸金属服务器,您可以通过弹性公网IP进行访问,在给定的操作系统镜像上可以自行安装加速卡相关的驱动和其他软件,使用SFS或OBS进行数据存储和读取相关的操作,满足算法工程师进行日常训练的需要。请参见弹性裸金属Lite Server。 ModelArts Lite C
训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
资源和工具链,以及具体的Notebook代码运行示例和最佳实践,并对于实际的操作原理和迁移流程进行说明,包含迁移后的精度和性能验证、调试方法说明。 核心概念 推理业务昇腾迁移整体流程及工具链 图1 推理业务昇腾迁移整体路径 推理业务昇腾迁移整体分为七个大的步骤,并以完整工具链覆盖全链路: