检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
请参考《API文档》检查请求参数中输入的token数值是否不在范围内,并重新调试API。 PANGU.3318 tolal ContentLength Illegal. Content长度不合法 请参考《API文档》检查请求参数中输入的Content参数长度是否不在范围内,并重新调试API。
{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整温度、核采样、最大Token限制等参数。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。 登录ModelArts Studio大模型开发平台,进入所需空间。
测大模型数据集流程见表2。 表2 盘古预测大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 发布预测类数据集 流通预测类数据集 数据流通是将单个数据集发
执行深度定制用户回复改写(前处理)失败时触发该错误码。 可检查前处理护栏代码。 101049 执行深度定制大模型生成的参数取值改写(后处理)失败时触发该错误码。 可检查后处理护栏代码。 101050 执行默认护栏(时间参数解析)失败时触发该错误码。 可检查支持处理的时间类型是否超出支持范围。 102053 提示词模板有误时触发该错误码。
问题二:文本翻译失败,如图2,工作流不输出翻译后的内容,始终处于提问状态。 图2 文本翻译失效 可能原因:如图3,提问器节点的Prompt指令配置有误,指令中的参数与节点配置的输出参数不对应。 图3 提问器节点配置错误示例 解决方法:按照图4,正确配置提问器节点的指令,配置正确后的试运行效果如图5。 图4 提问器节点配置正确示例
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
取Token”接口。并填写请求Header参数。 接口地址为:https://iam.cn-southwest-2.myhuaweicloud.com/v3/auth/tokens 请求Header参数名为Content-Type,参数值为application/json 图2 填写获取Token接口
看对应编程语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 >
问题三:存在重复数据。 删除重复数据。 略 略 训练模型 自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate)
数据工程操作流程见图1、表1。 图1 数据集构建流程图 表1 数据集构建流程表 流程 子流程 说明 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 加工数据集 清洗数据集 通过专用的清洗算子对数据进行预处理,确保数据符合模型训练
场景中广泛用于工艺参数和性能指标的预测。 矿山行业:进行智慧配煤,例如预测焦炭成分质量,优化配煤比例,提高焦炭质量,降低生产成本。进行智能浓缩,例如预测焦炭成分质量,优化配煤比例,提高焦炭质量,降低生产成本。 油气行业:进行储层参数预测,例如预测储层的物理参数,如孔隙度、渗透率等
于页面提示进行选择。 单击“下一步”,可查看效果预览。 单击“下一步”,参考表1配置标注分配与审核。 表1 标注分配与审核配置 参数类型 参数名称 参数说明 标注分配 启用多人标注 关闭时,默认管理员单人标注。 启用时,可以指定参与标注的人员及标注数量。 标注审核 是否审核 否,标注后不进行审核操作。
考,以提高标注效率。 单击“下一步”,可查看效果预览。 单击“下一步”,参考表1配置标注分配与审核。 表1 标注分配与审核配置 参数类型 参数名称 参数说明 标注分配 启用多人标注 关闭时,默认管理员单人标注。 启用时,可以指定参与标注的人员及标注数量。 标注要求 选择标注项为“
实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合 过拟合是指为了得到一致假设而使
不可用的低质量的数据。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate)
V大模型数据集流程见表2。 表2 盘古CV大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 加工图片、视频类数据集 清洗图片、视频类数据集 通过专用的清
用路径,详见获取调用路径。 填写请求Header参数。 参数名为Content-Type,参数值为application/json。 参数名为X-Auth-Token,参数值为步骤1中获取的Token值。 参数名为stream,参数值为true。当前应用仅支持流式调用。 在Postman中选择“Body
大模型数据集流程见表3。 表3 盘古NLP大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 加工文本类数据集 清洗文本类数据集 通过专用的清洗算子对数据
流。 - 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求
用训练(重新训练模型)。在重训配置参数时,您可以选择新要素进行训练。请注意,所选的数据集必须包含您想要添加的新要素。此外,您还可以通过训练更改所有的模型参数,以优化模型性能。 微调:微调是将新数据应用于已有模型的过程。它适用于不改变模型结构参数和引入新要素的情况。如果您有新的观测