检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
功能总览 功能总览 全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格
不可用的低质量的数据。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate)
实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合 过拟合是指为了得到一致假设而使
在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作: 编辑。单击操作列的“编辑”,可以修改模型的checkpoints、训练参数、训练数据以及基本信息等。 启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。 克隆。单击操作列的“更多 > 克隆”,可以复制当前训练任务。
数据获取:数据获取是数据工程的第一步,涉及从不同来源和格式的数据导入到平台。ModelArts Studio大模型开发平台提供多种高效灵活的数据接入方式,支持本地上传、通过OBS服务将数据导入平台。平台支持的多种数据类型包括文本、图片、视频等,能够满足不同行业和业务需求的多样化数据接入方式。用户还可以根据业务需求上
流。 - 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求
源。 可以选择“全局服务资源”,即服务部署时不区分区域,访问全局级服务,不需要切换区域,全局服务不支持基于区域项目授权。如对象存储服务(OBS)、内容分发网络(CDN)等。 选择完成后,单击“确定”。 图4 设置最小授权范围 单击“完成”,完成用户组授权。 图5 完成授权 创建盘古子用户
多个任务的底层支持。 通过使用海量的互联网文本语料对模型进行预训练,使模型理解人类语言的基本结构。 微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于利用少量的特定任务数据,使模型的表现从通用性向具体任务需求过渡。 使用小规模
类数据集,可选择预置加工算子,请参见文本类加工算子能力清单。 在左侧“添加算子”模块勾选所需算子。 在右侧“加工步骤编排”页面配置各算子的参数,可通过右侧按钮,拖拽算子的上下顺序来调整算子在加工任务流中的执行顺序。 算子编排过程中,可以单击右上角“保存为新模板”将当前算子编排流程
产品优势 预置多,数据工程“易” ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。 0代码,模型开发“简” ModelArts Studio大模型开发平台预置盘古系列预训练大模型,支持快速
以及理解大语言模型能力方面都起着重要作用。用户可以通过提示词工程来提高大语言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。
建议直接修改该请求,不要重试该请求。 504 Gateway Timeout 请求在给定的时间内无法完成。客户端仅在为请求指定超时(Timeout)参数时会得到该响应。 505 HTTP Version Not Supported 服务器不支持请求的HTTPS协议的版本,无法完成处理。 父主题:
<depth>3</depth> </size> <segmented>1</segmented> <mask_source>obs://xianao/out/dataset-8153-Jmf5ylLjRmSacj9KevS/annotation/V001/segmen
数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。
地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
型Agent,如金融分析助手、网络检测助手等。 知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库、工具、规划模式等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。 流程型Agen
减少手动操作,提高数据处理的效率。 满足业务需求:不同类型的数据需要不同的处理方式,平台根据文本、图片、视频、气象等数据类型提供专门的加工工具,满足各种复杂的业务需求。 增强模型性能:通过合适的数据加工,可以提高数据的可用性,进而提升模型的训练效果,使其具备更高的精度和鲁棒性。
阶段识别并解决数据中的问题,为后续的模型训练和优化奠定坚实基础。 ModelArts Studio大模型开发平台提供了全面的数据集质量评估工具,能够帮助用户从多个维度检测和优化数据集的质量。平台预设了多种数据类型的基础评估标准,用户可以直接使用这些标准,也可以根据具体的业务需求创