检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
持。 适配的CANN版本是cann_8.0.rc2,驱动版本是23.0.5。 本文档适用于仅使用OBS对象存储服务(Object Storage Service)作为存储的方案,OBS用于存储模型文件、训练数据、代码、日志等,提供了高可靠性的数据存储解决方案。 约束限制 如果要使
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/train/<commit_id>代码目录。
执行训练任务 执行训练任务(推荐) 执行训练任务(历史版本) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
Step2 在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图1 复制登录指令 Step3 修改并上传镜像 1. 在ECS服务器中输入登录指令后,使用下列示例命令将Standard镜像上传至SWR:
rc2,驱动版本是23.0.5。 本文档适用于OBS+SFS Turbo的数据存储方案,不适用于仅使用OBS的存储方案。通过OBS对象存储服务(Object Storage Service)与SFS Turbo文件系统联动,可以实现数据灵活管理、高性能读取数据等。通过OBS上传训练所需的模型文件、训
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
准备工作 准备资源 准备数据 准备权重 准备代码 将数据预热到SFS Turbo 准备镜像 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
训练脚本说明 训练脚本参数说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed
found.')”。 原因:Moxing在进行文件复制时,未找到train_data_obs目录。 处理建议:修改train_data_obs目录为正确地址,重新启动训练作业。 另外在Moxing下载OBS对象过程中,不要删除相应OBS目录下的对象,否则Moxing在下载到被删除的对象时会下载失败。
训练启动脚本说明和参数配置 训练数据集预处理说明 训练权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 图1 创建训练作业 训练作业启动命令中输入: cd /
json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2