检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
n"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
n"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
n"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 父主题: 推理模型量化
service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理服务后的服务预测地址,示例:http://
pem文件生成)。 单击“Open”。如果首次登录,PuTTY会显示安全警告对话框,询问是否接受服务器的安全证书。单击“Accept”将证书保存到本地注册表中。 图6 询问是否接受服务器的安全证书 成功连接到云上Notebook实例。 图7 连接到云上Notebook实例 父主题:
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图1 开启故障重启 断点续训练是通过checkpoint机制实现。c
通过关键代码段 + 退出码尝试去搜索引擎寻找解决办法。, 通过训练日志排查问题 通过日志判断出问题的代码范围。 修改代码,在问题代码段添加打印,输出更详细的日志信息。 再次运行作业,判断出问题的代码段。 父主题: 业务代码问题
如果有差异,则说明当前模型与原始onnx的结果存在差异。依次单独替换onnx模型为对应的MindSpore Lite模型,从而定位出有差异的模型。在模型初始化的代码块已经添加了use_ascend参数,修改参考如下: 图2 代码修改 以上述现象为例,通过修改use_ascend参数值对模型替换,可以发现:当te
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
可根据使用场景判断清晰度是否满足需要。比如使用场景的数据采集来自高清摄像头,那么清晰度对应的需要高一些。可通过对数据集做锐化或模糊操作,添加噪声对清晰度做调整。 图像色彩的丰富程度 Colorfulness 横坐标:图像的色彩丰富程度,值越大代表色彩越丰富。 纵坐标:图片数量。
订阅模型与云服务订阅模型的区别: 在管理控制台,模型管理所在位置不同。订阅模型统一管理在“模型管理>订阅模型”页面中,而云服务订阅模型管理在“模型管理>云服务订阅模型”页面中。 模型来源不同。订阅模型,模型来源于AI Gallery;云服务订阅模型,模型来源于其他AI服务开发的模型。
5-7b块。 exp_name:实验块,训练策略-序列长度所需参数配置。 样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加,样例截图如下: 步骤二:执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、