检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:qwen-14b-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:服务接口地址,若服务部署在notebook中,该地址为"http://127
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图1 开启故障重启 断点续训练是通过checkpoint机制实现。c
#启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda
service_type String 镜像支持服务类型。枚举值如下: COMMON:通用镜像。 INFERENCE: 建议仅在推理部署场景使用。 TRAIN: 建议仅在训练任务场景使用。 DEV: 建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。 size Long 镜像大小(单位KB)。
动学习。 在自动学习项目管理页面,单击对应的项目名称,进入此项目的自动学习详情页。 在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如果您增删标签,建议对所有的图片进行排查和重新标注。对已标注的数据,
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step6 启动推理服务,在启动服务时添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化
/home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step6 启动推理服务,在启动服务时添加如下命令。 -q awq 或者--quantization awq 父主题: 推理模型量化
如果想保持长时间连接不断开,可以通过配置SSH定期发送通信消息,避免防火墙认为链路空闲而关闭。 客户端配置(用户可根据需要自行配置,不配置默认是不给服务端发心跳包),如图1,图2所示。 图1 打开VS Code ssh config配置文件 图2 增加配置信息 配置信息示例如下: Host
pem文件生成)。 单击“Open”。如果首次登录,PuTTY会显示安全警告对话框,询问是否接受服务器的安全证书。单击“Accept”将证书保存到本地注册表中。 图6 询问是否接受服务器的安全证书 成功连接到云上Notebook实例。 图7 连接到云上Notebook实例 父主题:
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
n"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step6 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16
若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 父主题: 推理模型量化
Studio”进入ModelArts Studio大模型即服务平台。 在ModelArts Studio左侧导航栏中,选择“模型广场”进入模型广场。 选择模型,单击“立即使用”进入模型详情页。在模型详情页可以查看模型的详细介绍。 模型介绍 表1列举了ModelArts Studio大模型即服务平台支持的模型清单,模型详细信息请查看界面介绍。
service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理服务后的服务预测地址,示例:http://
否 String 支持的服务,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook。 SSH:可以通过SSH协议远程连接Notebook。 key_pair_names 否 Array of strings SSH密钥对名称,可以在云服务器控制台(ECS)“密钥对”页面创建和查看。
"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
如果想保持长时间连接不断开,可以通过配置SSH定期发送通信消息,避免防火墙认为链路空闲而关闭。 客户端配置(用户可根据需要自行配置,不配置默认是不给服务端发心跳包),如图1,图2所示。 图1 打开VS Code ssh config配置文件 图2 增加配置信息 配置信息示例如下: Host
可根据使用场景判断清晰度是否满足需要。比如使用场景的数据采集来自高清摄像头,那么清晰度对应的需要高一些。可通过对数据集做锐化或模糊操作,添加噪声对清晰度做调整。 图像色彩的丰富程度 Colorfulness 横坐标:图像的色彩丰富程度,值越大代表色彩越丰富。 纵坐标:图片数量。