检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 消息体的类型(格式),必选,此接口为multipart/form-data。 表2 请求Body参数
空间成员完成计算节点部署,配置参数时选择存储方式和数据目录,参考4.1 部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在数据目录中完成数据发布,参考4.6.4 发布数据。 对接MA的计算节点如果是使用子账号进行创建的,需要参考配置CCE集群子账号权限给子账号增加“管理员权限”配置。
在“计算节点详情”页,单击“前往计算节点”,在登录页正确输入部署计算节点时设置的“登录用户名”和“密码”。 图6 前往计算节点 选择界面左侧“数据管理”,单击“创建”,在弹出的界面选择API类型连接器,配置创建数据的参数,配置完成后单击“确定”。 图7 创建数据 API数据集配置的外部数据源需满足如下要求: 请求方式为GET或POST
xxx”的实例,记录实例名称前三段,如图所示。 图13 记录实例名称 在IEF服务控制台,单击“边缘应用 > 应用配置”,进入配置项页签。 图14 进入配置项页签 在配置项列表上方的搜索栏中输入3中记录的实例名称前三段,搜索配置项。 图15 搜索配置项 单击搜索到的配置项对应操作栏中的“更新”,进入更新配置项页面。
Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imb
点、HCSO的部署模式; 采用容器化资源/部署管理,支持调度方、数据参与方、计算方的弹性扩缩容。 安全隐私 支持用户自定义隐私策略,实现敏感数据的识别、脱敏、水印保护,保障隐私数据安全; 多方协同过程中隐私信息交互(SQL JOIN数据碰撞、可信联邦学习模型参数)的加密保护; 支
训练模型文件则定义了模型的结构,会用于每个参与方在本地初始化模型。 图2 配置执行脚本、训练模型文件 配置已方、对方数据集。在作业的数据集配置中,选择己方、对方的本地数据集,此外需将已方的数据集设为评估数据集。横向联邦中,需要确保不同参与方的数据集结构完全一致。 图3 配置数据集 保存并执
指计算节点所属的CCE或IEF容器的工作负载,目前支持“OBS存储”和“主机存储”方式。“OBS存储”方式是将OBS服务中的路径映射到服务容器内的本地路径,“主机存储”方式是指将计算节点所在机器的本地路径映射到服务容器内的本地路径。 主机路径 挂载使用的容器外部的路径,用于服务容
先设置服务委托。 进入计算节点购买页面,在“部署配置”区域,设置部署方式为“边缘节点部署”,在弹出的对话框单击“同意授权”。 同意授权后,TICS将在统一身份认证服务IAM下为您创建名为tics_admin_trust的委托,委托绑定的权限名为tics_role_trust。授权成功后,可以进入委托列表查看。
先设置服务委托。 进入计算节点购买页面,在“部署配置”区域,设置部署方式为“边缘节点部署”,在弹出的对话框单击“同意授权”。 同意授权后,TICS将在统一身份认证服务IAM下为您创建名为tics_admin_trust的委托,委托绑定的权限名为tics_role_trust。授权成功后,可以进入委托列表查看。
用数方在接受到供数方发送的数据合约,若满足需求或与前期约定一致,可签署合约,若不一致,可选择拒绝合约。 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 存在已创建的合约。 约束限制
私不泄露的前提下,利用其他机构的医疗数据提升乳腺癌预测模型的准确率。 进一步地,可根据该模型案例发散,构建老年人健康预测、高血压预测、失能早期预警模型等。 图1 乳腺癌预测研究应用场景示意 作业发起方通过计算节点上传数据、待训练模型的定义文件; 作业发起方配置TICS的横向联邦学习作业,启动训练;
在“联邦预测”页面实时预测Tab页,单击“模型部署”,开始部署模型。 图1 模型部署 模型部署完成后,单击“发起预测”,在系统弹窗中填写要预测的“样本id”和“模型特征”对应的数值,然后单击“预测”,就会有系统弹窗弹出,显示预测结果。 注意:样本id从创建作业选择数据集的样本id列获取。 图2 发起预测
作业发起方通过计算节点提供的控制台页面,发起多方安全计算作业。 多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。 最
根据企业用户的职能,设置不同的访问权限,以达到用户之间的权限隔离。 将TICS资源委托给更专业、高效的其他华为账号或者云服务,这些账号或者云服务可以根据权限进行代运维。 如果华为账号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用TICS服务的其它功能。
感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图
在“计算节点管理”页面,查找需要发布数据的计算节点名称,单击“计算节点名称”进入计算节点详情页。 图1 选择计算节点 在“计算节点详情”页,单击“前往计算节点”,在登录页正确输入部署计算节点时设置的“登录用户名”和“密码”。 图2 前往计算节点 在“数据管理”页签找到待发布的数据名称,单击“发布”,弹出发布数据集选择框。
TICS基于安全隐私策略的数据安全防护会自动拒绝不合法的SQL语句执行,但当安全规则限制过强的时候,可能会影响正常业务的执行。 对此TICS 提供作业审批功能。配置生效后,所有的计算任务执行时,均会生成审批报告,提交到数据提供方侧,由提供方确认关联数据集的用途和风险。关联参与方都同意后,才能执行SQL作业。
联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式,允许用户
审计日志 审计日志页面是可信智能计算服务提供的一项审计数据流动的功能。通过计算节点侧审计页面信息,用户可以清晰地获知空间中的参与方通过该计算节点运行的任务详情。同时,部署计算节点时若开启BCS功能,审计数据会同步至区块链上。 计算节点侧查看审计日志 用户登录TICS控制台。 进入