检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
规格需要平台管理员在纳管模型评测用途的任务作业集群后创建。 优先级:设定任务的优先级,数值取[-50,50]的整数,数字越大,优先级越高。 选择模型与数据集 图2 选择模型与数据集 选择模型:选择模型仓库和对应的模型版本,如果需要将模型对应的原始算法也挂载到用户评测容器中,可单击
line)检测 压实线检测的目的是判断主车行驶过程中是否压到实线。 当主车与距离最近的车道线的小于主车宽度的一半时,并且该车道线的类型为OSI定义的osi3.LaneBoundary.classification.type.TYPESOLIDLINE,则认为主车的轮胎已经压到实线。 该
名为“ma-group”的普通用户,且必须确保该用户的uid=1000、gid=100。 需要明确设置镜像的启动命令。执行命令如下: CMD sh /home/mind/run.sh 服务端必须使用https协议, 且暴露在所有网络平面(0.0.0.0)的“8080”端口。 在“
# 按需安装用户APT环境;如果需要修改/etc/apt/sources.list可替换 COPY /path/to/sources.list /etc/apt/sources.list RUN apt-get install vim # 按需安装用户算法环境;如果需要修改~/
编译版本:同一个源模型使用不同芯片编译,生成的结果为该模型的不同版本。 任务日志:任务运行过程中生成的日志信息,详情请查看编译任务日志查看下载。 资源占用情况:显示任务占用的CPU、内存、GPU及显存占用率百分比的折线图,详情请查看资源占用情况。 删除任务 单击操作栏的“删除”,删除单个任务。 勾
标注镜像Dockerfile示例 一般情况下,引擎主要包含预标注算法或预审核算法运行所需要的基本依赖环境,用户也可将预标注算法或预审核算法包内置在AI引擎中。 用户可使用命令行模式或Dockerfile模式进行构建。 以预标注自定义镜像为例,一般的镜像制作Dockerfile示例如下(xxx替换为实际路径):
FollowLeadVehicleEmergencyBrake 简述:主车Ego和正前方33.33m的头车lead_vehicle按照相同的初始速度匀速行驶,前车突然刹车,10000s后激活Ego的controller,40s后停止场景(激活时间与场景停止时间可修改)。 osc2.0场景 import standard
拉丁超立方采样的目的是用较少的采样次数,来达到与多次蒙特卡洛采样相同的结果,并且涵盖更全面的边界点。 如下图所示,同样对于µ=0,δ=1的正态分布,可以利用更少的采样点得到相同的分布,并且不会产生明显的聚集现象,边界值也能更容易获取到。 图2 拉丁超立方采样 联合概率分布采样 联合概率分布采样假设连续
蒙特卡洛采样 拉丁超立方采样 拉丁超立方采样的目的是用较少的采样次数,来达到与多次蒙特卡洛采样相同的结果,并且涵盖更全面的边界点。 如下图所示,同样对于µ=0,δ=1的正态分布,可以利用更少的采样点得到相同的分布,并且不会产生明显的聚集现象,边界值也能更容易获取到。 图2 拉丁超立方采样 联合概率分布采样
car-PR compare 评测任务日志查看与下载 评测任务运行的过程中生成日志,训练服务提供日志的查看以及下载功能,支持查看评测任务的运行情况。 生成的日志文件共有四种形式: evaluate-xx-{id}.log:用户实际评测任务的训练日志。 evaluate-xx-{id}-init
Headway)检测 车头时距检测的目的是判断主车行驶过程中与其他交通车的车头时距是否台小。 车头时距是主车与引导车的相对距离除以主车的速度。 即使主车未发生碰撞, 当车头时距过小时(该阈值可用户自定义,本设计默认取2s), 发生碰撞的风险太大, 这样也是不合理的。 车头时距和碰撞时间两者都是描述碰撞风险大小的。
规格需要平台管理员在纳管模型评测用途的任务作业集群后创建。 优先级:设定任务的优先级,数值取[-50,50]的整数,数字越大,优先级越高。 选择模型与数据集 图2 选择模型与数据集 选择模型:选择模型仓库和对应的模型版本,如果需要将模型对应的原始算法也挂载到用户评测容器中,可单击
智驾模型简介 通过与AI模型、大模型的结合,提供高精度自动标注能力,大幅度降低传统人工标注数据真值的成本。提供场景数据集生成能力,帮助自动驾驶模型训练快速扩充数据集,低成本获取难例数据集。提供多模态场景理解和检索能力,帮助客户在海量样本库快速、智能的分类和检索。 前提条件 开通相
信息辅助系统激活用于评价算法是否按照预期激活以下六项功能: 倒车摄像头 环视摄像头 自动远光灯 驾驶员状态监测系统 抬头显示系统 夜视辅助系统 其实现逻辑与预警系统激活(Warning)检测、控制辅助系统激活(Control)检测一致。 父主题: 内置评测指标说明
py”(启动文件名可自定义),以及一些必要的训练文件。 启动文件(必选) 算法的启动文件,直接填写相对路径,如 “main.py” 或“tools/main.py”。 需要编译的依赖(可选) 如果使用了第三方的需要编译的算法库,将编译脚本或编译产物或依赖库添加到算法文件根目录下。推荐将通用依赖编译安装操作放在算法绑定的用户自定义镜像。
立且隔离的可用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。 Octopus通过对DB的数据进行备
2.5D人车图片标注任务 2.5D人车图片标注任务相比于2D人车标注任务,由2D的矩形框转变为2.5D框,可以定位车辆车身的正面与侧面,辅助开发者辨别车辆的行驶方向。 绘制对象 单击2.5D图片标注任务,选择一张图片进入人工标注。 选择标注工具。 单击左侧工具栏2.5D标注工具(快捷键5,非小键盘)。
任务配置 任务配置主要由仿真算法、评测项配置和场景三部分组成。仿真算法提供自动驾驶控制算法。评测配置提供评测依据。场景作为自动驾驶模拟场景,测试仿真算法的控制效果。 创建任务配置 创建仿真任务配置时需要完成基本配置、算法配置,评测项配置和选择场景几部分的内容。创建任务配置的步骤可参考如下:
选择矩形图形工具(快捷键3,非小键盘)。 在标注列表中选择需要标注的类别(非必要,也可等标注完成后,右键修改类别)。 单击选择的第一个点,移动鼠标选择需要绘制的第二个,再次单击结束。 图2 选择绘制矩形框 绘制垂直线。 同选择矩形框工具方式与类别一致选择直线图形工具(快捷键2,非小键盘)。 长
当主车和发生碰撞的副车的夹角在或者内,并且副车位于主车后方,则认为发生被追尾碰撞。 当主车与副车的碰撞夹角在内时,则认为发生正面对碰。 当主车与副车的碰撞夹角在或者内时,则认为发生垂直角度碰撞。 当主车与副车的碰撞角度在或或或内时,则认为发生斜角侧碰。 该指标关联的内置可视化时间序列数据为:暂无。