检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
无法对文件进行写和操作 - NPU:驱动固件不匹配 NpuDriverFirmwareMismatch 重要 NPU驱动固件版本不匹配 请从昇腾官网获取匹配版本重新安装 无法正常使用NPU卡 Snt3P 300IDuo Snt9B Snt9C NPU:Docker容器环境检测 NpuContainerEnvSystem
据集(默认值) false:标注任务的标注结果不自动同步至数据集 否 bool content_labeling 语音分割标注任务是否开启内容标注,默认开启。 否 bool description 标注任务描述信息,长度为0-256位,不能包含^!<>=&"'特殊字符。 否 str
接口启动2种方式。详细启动服务与请求方式参考:https://docs.vllm.ai/en/latest/getting_started/quickstart.html。 以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm.ai/en/lates
务中,并通过后续的数据集标注节点进行标注。 对于一些已标注好的原始数据,可以直接导入到数据集或者标注任务中,并通过后续的数据集版本发布节点获取带有版本信息的数据集对象。 属性总览 您可以使用DatasetImportStep来构建数据集导入节点,DatasetImportStep结构如下。
精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness
精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness
则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
PyTorch Open-Sora-Plan1.0基于Lite Server适配PyTorch NPU训练推理指导(6.3.907) 表9 内容审核模型 模型名称 应用场景 软件技术栈 指导文档 Bert 推理 MindSpore Lite Bert基于Lite Server适配MindSpore
精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness
eqs参数,避免档位过大导致图编译错误。 MoE模型依赖MindSpeed,当使用MoE模型推理时,需提前安装: git clone https://gitee.com/ascend/MindSpeed.git cd MindSpeed git checkout a956b907
接口启动2种方式。详细启动服务与请求方式参考:https://docs.vllm.ai/en/latest/getting_started/quickstart.html。 以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm.ai/en/lates
接口启动2种方式。详细启动服务与请求方式参考:https://docs.vllm.ai/en/latest/getting_started/quickstart.html。 以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm.ai/en/lates
售罄创建失败。 建议您在创建界面更换规格重新创建资源池。 为什么无法使用资源池节点上的全部CPU资源? 由于资源池节点上会安装系统、插件等内容,因此不能完全使用所有资源。例如:资源池节点是8U,节点分配给系统组件部分CPU,可用的资源会小于8U。 建议您在启动任务前,在该资源池的
用户可以根据是否使用AI引擎Mindspore参与功能调试,选择不同的Conda环境。 Notebook:是一款Web应用,用户能够在界面编写代码,并且将代码、数学方程和可视化内容组合到一个文档中。 JupyterLab插件:插件包括规格切换,分享案例到AI Gallery进行交流,停止实例(实例停止后CPU、Memory不再计费)等,提升用户体验。
TfServingBaseService class MnistService(TfServingBaseService): # 预处理中处理用户HTTPS接口输入匹配模型输入 # 对应上述训练部分的模型输入为{"images":<array>} def _preprocess(self
载后的文件如图2所示,代码所在路径为“./models/official/cv/resnet/”。 # 下载代码 git clone https://gitee.com/mindspore/models.git -b v1.5.0 图2 下载后的模型包文件 下载花卉识别数据集。