检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PANGUDOC).filePath(filePath).mode("1").build()); // 初始化pangudoc split(通过配置文件指定filePath和mode) DocSplit docPanguSplit = DocSplits.of(DocSplits.PANGUDOC);
lookup("1+1"); 清理数据:删除缓存中的数据。例如,删除对应的缓存数据,可参考以下示例。 // 清理 cache.clear() 配置过期策略:设置缓存有效期,支持基于时间和大小的限制。 // 设置缓存数据10s 后过期 Cache cache = Caches.of(Caches
图3 前往OBS 在OBS控制台页面,单击界面右上角“创建桶”。 图4 OBS页面 创建OBS桶时,桶区域需要与盘古大模型区域保持一致。其余配置参数可以使用默认值,详细OBS桶参数说明请参见OBS用户指南。 图5 创建OBS桶 参数填选完成后,单击“立即创建”。创建好的OBS桶将显示在桶列表中。
"description")) .build()); 定义一个ToolRetriever包含ToolProvider和向量数据库配置2个参数。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvid
ovider, vector_config) 定义一个ToolRetriever包含2个参数,一个ToolProvider,一个向量数据库配置。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider,I
vector_api.add_docs(bulk_list) 通过vectorStoreConfig判断使用CSS的插件模式和非插件模式。如果配置了embedding模型,则使用非插件模式,否则使用插件模式。注意,在非插件模式下,vectorFields有且只有1个。 父主题: Memory(记忆)
盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保护技术说明:https://support.huaweicloud.com
running or have been deleted. 推理服务状态异常。 请检查调用API时deploymentId是否正确,并检查模型的部署状态是否存在异常,如果仍无法解决请联系服务技术支持协助解决。 PANGU.3267 qps exceed the limit. QPS超出限制。
project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project id。 图1 查看盘古服务区域 图2 获取user name、domain name、project id 下载并安装Postman调测工具。
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
创建一个新的数据集 检测数据集质量 清洗数据集 发布数据集 模型开发套件 模型开发套件是盘古大模型的核心组件,提供从模型创建到部署的一站式解决方案。该套件具备模型管理、训练、评估、压缩、部署、推理和迁移等功能,支持模型的自动化评估,确保模型的高性能和可靠性。 通过高效的推理性能和跨平台迁移工具,模
是华为云推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发与应用平台。平台提供了包括盘古大模型在内的多种大模型服务,支持大模型的定制开发,并提供覆盖全生命周期的大模型工具链。 盘古大模型为开发者提供了一种简单高效的方式来开发和部署大模型。通过数据工程、模型开发和应用开发
使用推理SDK 安装SDK 使用SDK前,需要安装“huaweicloud-sdk-core”和“huaweicloud-sdk-pangulargemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在
推理资产不足,现有资源无法满足同时部署多个模型时,可以扩容模型推理资产。 在“平台管理 > 资产管理 > 模型推理资产”中,单击操作列“扩容”执行扩容操作。 图4 扩容模型推理资产 不同类型的模型在部署时,做占用的推理资产数量存在差异,部署模型时所占的推理资产数量与模型类型关系如下。 表1 部署模型 模型类型
模型基础信息相关 盘古-NLP-N1系列模型支持128K外推。 公测 模型的基础信息 2 模型部署相关 盘古-NLP-N2-基础功能模型-32K模型,LoRA微调后支持4K部署。 公测 部署为在线服务
型相比,BI专业大模型更适合执行数据分析、报告生成和业务洞察等任务。 模型推理资产即部署模型所需的cpu、gpu资源(专属资源池)。如果不订购推理资产,可以使用订购的盘古模型进行训练,但无法部署训练后的模型。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即购买”,平台将
服务列表”中选择需要调用的模型,并单击操作列的“调用路径”。 图2 服务概览页面 在弹窗中可获取对应模型的API请求地址。其中,路径选中部分即为模型的部署ID(deployment_id)。 图3 获取API请求地址 父主题: 附录
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的模型,回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大
采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。 创建模型压缩任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型压缩”。 单击界面右上角“创建压缩任务”,进入创建压缩任务页面。