检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询Notebook资源类型下的标签 功能介绍 查询用户当前project下Notebook实例类型下的标签,默认查询所有工作空间,无权限不返回标签数据。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
推理服务精度评测 本章节介绍了2种精度测评方式,分别为Lm-eval工具和MME工具。 lm-eval工具适用于语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等,该工具为离线测评,不需要启动推理服务。
docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像
套餐,提前规划资源的使用额度和时长。在欠费时,您需要及时(15天之内)续费以避免您的文件系统资源被清空。 购买的SFS可以用于存储数据和代码。 如何购买弹性文件服务? 容器镜像服务SWR 容器镜像服务分为企业版和共享版。共享版计费项包括存储空间和流量费用,目前均免费提供给您。企业版支持按需计费模式。
3_unfiltered_cleaned_split.json 如果使用其他数据集,需要先执行步骤二:非sharegpt格式数据集转换(可选)转换数据集格式为sharegpt格式。 执行如下脚本将sharegpt格式数据生成为训练data数据集。 python allocation.py \ --outdir
3_unfiltered_cleaned_split.json 如果使用其他数据集,需要先执行步骤二:非sharegpt格式数据集转换(可选)转换数据集格式为sharegpt格式。 执行如下脚本将sharegpt格式数据生成为训练data数据集。 python allocation.py \ --outdir
3_unfiltered_cleaned_split.json 如果使用其他数据集,需要先执行步骤二:非sharegpt格式数据集转换(可选)转换数据集格式为sharegpt格式。 执行如下脚本将sharegpt格式数据生成为训练data数据集。 python allocation.py \ --outdir
下载或读取文件报错,提示超时、无剩余空间 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未达到50GB,只有默认的10GB,导致作业训练失败。
AC445CAA1A71019C9D0 retry:0 原因分析 出现该问题的可能原因如下: OBS服务的权限出现问题,导致无法正常读取数据 处理方法 请检查OBS权限配置,如未解决问题可参考OBS文档的已配置OBS权限,仍然无法访问OBS(403 AccessDenied)。
Error tokenizing data. C error: Expected .* fields” 问题现象 使用pandas读取csv数据表时,日志报出如下错误导致训练作业失败: pandas.errors.ParserError: Error tokenizing data
如果需要在个人PC或虚拟机上使用ModelArts SDK,则需要在本地环境中安装ModelArts SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。 ModelArts SDK使用限制 本地ModelArts SD
日志提示“No space left on device” 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未
问题并给出相关调优建议。 在过往性能调优场景中,如果性能profiling数据在OBS上,通常需要将TB或者GB级别的profiling数据下载至本地后才能使用msprof-analyze进行分析,大量数据的下载耗时以及对本地大规格存储盘的要求容易导致分析受阻。为了能自动串联高性
获取对应模型的权重文件,获取链接参考表1。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
获取对应模型的权重文件,获取链接参考表1。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。
spark)。 _preprocess(self, data) 预处理方法,在推理请求前调用,用于将API接口输入的用户原始请求数据转换为模型期望输入数据。 _inference(self, data) 实际推理请求方法(不建议重写,重写后会覆盖ModelArts内置的推理过程,运行自定义的推理逻辑)。
docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像
input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集 若使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGP
Turbo挂载盘的形式创建,因此需要将上述数据集、代码、权重文件从OBS桶上传至SFS Turbo中。 用户需要创建开发环境Notebook,并绑定SFS Turbo,以便能够通过Notebook访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS