检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/m
Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/m
dataset size. 原因分析 数据集过少,导致训练失败。 其中,增量预训练会packing,将短sample拼成seq_len长度进行训练,因此原数据条数多不意味着处理后samples多。 问题影响 训练失败或者训练结果与预期不符。 处理方法 增加数据集数量。 父主题: Studio
硬件类型。支持CPU,GPU,Ascend。 表4 provision字段数据结构说明 参数 参数类型 描述 type String 部署类型,当前仅支持Docker。 spec Object 部署详情,如表5所示。 表5 spec字段数据结构说明 参数 参数类型 说明 engine String
py编写指导请见模型推理代码编写说明)。 确认该cuda版本与您安装的mmcv版本是否匹配。 部署时是否需要使用GPU,取决于的模型需要用到CPU还是GPU,以及推理脚本如何编写。 父主题: 服务部署
代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘十分重要,尤其是具有强表达能力的特征,可以抵过大量的弱表达能力的特征。 特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。
否 Object 自动停止参数,如表6 auto_stop定义数据结构说明所示。 annotations 否 Map<String,String> 注解信息,可扩展字段,缺省值为“NULL”。 表4 storage定义数据结构说明 参数 是否必选 参数类型 说明 type 是 String
云上迁移适配故障 无法导入模块 训练作业日志中提示“No module named .*” 如何安装第三方包,安装报错的处理方法 下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错
port xxxxx: Connection refused”如何解决? 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决? 报错“Bad owner or permissions
|──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train
右键单击该文件,选择Install Extension VSIX。 方法二:设置远端默认安装的插件 按照在ModelArts的Notebook中如何设置VS Code远端默认安装的插件?配置,即会在连接远端时自动安装,减少等待时间。 方法三:VS Code官网排查方式https://code
String 输入数据的名称,支持1到64位只包含英文、数字、下划线(_)和中划线(-)的字符。 type String 输入项类型。枚举值如下: dataset:数据集 obs:OBS data_selector:数据选择 data Object 输入项数据。 value Object
ices_out_cuda_frame failed with error code 0” 训练作业失败,返回错误码139 训练作业失败,如何使用开发环境调试训练代码? 日志提示“ '(slice(0, 13184, None), slice(None, None, None))'
|── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights #
Lite的接口即可。 MindSpore Lite提供了Python、C++以及JAVA三种应用开发接口。此处以Python接口为例,介绍如何使用MindSpore Lite Python API构建并推理Stable Diffusion模型,更多信息请参考MindSpore Lite应用开发。
/datasets/pixart-sigma-toy-dataset 修改数据集格式: 只需在数据集根目录创建个.py文件,读取其数据集格式做成flux数据集即可。 vim ${work_dir}/datasets/data.py #---------------data.py
准备工作 完成准备工作内容,生成benchmark-cli工具。 解压版本包data.tgz:测试样例数据;比如工作目录为:/homa/ma-user/LLaMAFactory # 将默认数据解压config同级目录 tar -zxvf ./benchmark/data.tgz ./benchmark/
dataset_id String 训练作业的数据集ID。 dataset_version String 训练作业的数据集版本ID。 type String 数据集类型。 “obs”:表示使用OBS的数据。 “dataset”:表示使用数据集的数据。 data_url String OBS的桶路径。
String 训练作业需要的数据集OBS URL。如:“/usr/data/”。 不可与data_source或者dataset_id/dataset_version_id同时出现,但必须有其一。 dataset_id 否 String 训练作业的数据集ID。应与dataset_
客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的Huggingface地址,数据指定data.tgz里面提供的gsm8k数据。 查看精度结果 任务完成之后会在test-benchmark目录下生成excel表格: 精度结果 LLaMAFac