检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
供了一个训练作业场景下的IDE插件ModelArts-HuaweiCloud,用户通过简易的操作,实现在本地IDE中进行训练配置、资源监控、作业管理、代码管理等动作。 本章节介绍如何使用VS Code插件创建训练作业并调试。 使用VS Code插件创建训练作业并调试功能目前是白名单,需要提交工单申请开通。
动态benchmark 获取测试数据集。 动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT:
为提升训练效果,建议在增量训练时,选择质量较高的数据,提升数据标注的质量。 增量训练的操作步骤 登录ModelArts管理控制台,单击左侧导航栏的自动学习。 在自动学习项目管理页面,单击对应的项目名称,进入此项目的自动学习详情页。 在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。
ts CommonOperations”已生效。 在“服务列表”中选择ModelArts,进入ModelArts主界面,单击“数据管理>数据集>创建数据 > 集”,如果可以成功访问对应的OBS路径,表示全局级服务的“OBS Administrator”已生效。 创建ModelArts自定义策略
通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志 问题现象 用户通过OBS导入模型时,选择使用基础镜像,用户自己编写了部分推理代码实现自己的推理逻辑,出现故障后希望通过故障日志排查定位故障原因,但是通过logger打印日志无法在“在线服务”的日志中查看到部分内容。
AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;
AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的
大模型 支持三方开源大模型,实现智能回答、聊天机器人、自动摘要、机器翻译、文本分类等任务。 AIGC 提供AIGC场景化解决方案,辅助创作文案、图像、音视频等数字内容。 自动驾驶 实现车辆自主感知环境、规划路径和控制行驶。支持自动驾驶场景PB级数据下模型高效训练,助力自动驾驶特
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install
Msprobe梯度监控 梯度监控工具提供了将模型梯度数据导出的能力。使用梯度监控工具,可以实现对训练过程模型每一层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监
如何安装C++的依赖库? 在训练作业的过程中,会使用到第三方库。以C++为例,请参考如下操作步骤进行安装: 将源码下载至本地并上传到OBS。使用OBS客户端上传文件的操作请参见上传文件。 将上传到OBS的源码使用Moxing复制到开发环境Notebook中。 以下为使用EVS挂载
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install
有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install
增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。
增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。
增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。
body中“auth.scope”的取值需要选择“project”,请求示例如下所示。 在构造请求中以调用获取用户Token接口为例说明了如何调用API。 { "auth": { "identity": { "methods": [ "password"
增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。