检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Integer 已删除的样本数量。 deletion_stats Map<String,Integer> 删除原因统计信息。 description String 版本描述信息。 export_images Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录
可通过/home/ma-user/AscendSpeed路径访问。 在ModelArts中创建训练作业如:预训练,执行代码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训
“标签名”或从下拉列表中选择已添加的标签。单击“确定”,完成选中图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标
指令监督微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据集存放于dataset_info
"data_path" : "/test-obs/classify/input/cat-dog/" } ], "description" : "", "work_path" : "/test-obs/classify/output/", "work_path_type"
团队标注任务当前验收任务详情。 create_time Long 标注任务创建时间。 dataset_id String 数据集ID。 description String 标注任务描述信息。 label_stats Array of LabelStats objects 标注任务标签统计信息。
Reset Content 重置内容,服务器处理成功。 206 Partial Content 服务器成功处理了部分GET请求。 300 Multiple Choices 多种选择。请求的资源可包括多个位置,相应可返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved
菜、水果和饮品),并给出置信度最高的5类商品的置信度得分。 步骤一:准备工作 已注册华为账号并开通华为云,进行了实名认证,且在使用ModelArts前检查账号状态,账号不能处于欠费或冻结状态。 注册华为账号并开通华为云 进行实名认证 配置委托访问授权 ModelArts使用过程中
本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。
at main (huggingface.co) 注意:Qwen2-VL 开源vllm依赖特定transformers版本, 请手动安装: pip install git+https://github.com/huggingface/transformers.git@21fac7ab
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
nets.nets_factory: class NetworkKeys(builtins.object) | Data descriptors defined here: | | __dict__ | dictionary for instance variables
在ModelArts上运行训练作业、将模型部署为在线服务会收取计算资源费用。案例使用完成后请参考后续操作:清除相应资源及时清除资源和数据。 步骤一:准备工作 注册华为账号并开通华为云、实名认证 注册华为账号并开通华为云 进行实名认证 配置委托访问授权 ModelArts使用过程中涉及到OBS、SWR、IEF等服务交互
on", "obs:object:ListMultipartUploadParts", "obs:object:AbortMultipartUpload", "obs:object:GetObjectAcl"
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
将数据和应用程序加密,以保护数据的机密性和完整性。 确保AI应用的相关软件都得到及时的安全更新和漏洞修补。 遵守相关的合规性要求,如GDPR、HIPAA、PCI DSS等。 进行适当的访问控制,以确保只有授权用户可以访问管理在线服务等相关资源。 监控和报告任何异常活动,并及时采取措施。
本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。
flower_photos.zip └── mindspore_model ├── logs │ └── xxx-xxx-xxx--0.log ├── output │ └── 20220627-105226-resnet50-224 └── mindspore-image-models.zip 提交训练作业常见问题
说明请参见表1。 不同类型标签列数据产生的评估结果说明请参见评估结果说明。 图1 模型评估报告 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。