检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ndspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以opena
否,忽略此步骤,执行下一步; ②修改yaml文件路径:修改demo.sh最后一行代码,将demo.yaml配置文件路径修改为自己实际绝对路径:{work_dir}/llm_train/LLaMAFactory/demo.yaml,例如将以下命令 修改前 FORCE_TORCHRUN=1
否,忽略此步骤,执行下一步; ②修改yaml文件路径:修改demo.sh最后一行代码,将demo.yaml配置文件路径修改为自己实际绝对路径:{work_dir}/llm_train/LLaMAFactory/demo.yaml,例如将以下命令 修改前 FORCE_TORCHRUN=1
tp://${docker_ip}:8080/generate。此处的${docker_ip}替换为宿主机实际的IP地址,端口号8080来自前面配置的服务端口。 few_shot:开启少量样本测试后添加示例样本的个数。默认为3,取值范围为0~5整数。 is_devserver:
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port} \ max_out_len=${max_out_len}
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port} \ max_out_len=${max_out_len}
本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae.safetensors文件路径。
(Press CTRL+C to quit) Step4 请求推理服务 另外启动一个terminal,使用命令测试推理服务是否正常启动,端口请修改为启动服务时指定的端口。 方式一:使用vLLM接口请求服务,命令参考如下。 curl -X POST http://localhost:8080/generate
所有的删除操作均不可恢复,请谨慎操作。 修改标注 当数据完成标注后,您还可以进入“已标注”页签,对已标注的数据进行修改。 基于音频修改 在数据集详情页,单击“已标注”页签,然后在音频列表中选中待修改的音频(选择一个或多个)。在右侧标签信息区域中对标签进行修改。 修改标签:在“选中文件标签”区域
务变化,修改用于标注的标签。支持添加、修改和删除标签。 添加标签 在“未标注”页签下,单击“标签集”右侧的加号,在弹出“新增标签”对话框中,设置“标签名称”和“标签颜色”,然后单击“确定”完成标签添加。 修改标签 在“已标注”页签中“全部标签”的下方操作列,选择需要修改的标签,单
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port} \ max_out_len=${max_out_len}
“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法: 方法1:使用常用框架自行编码开发模型,支持“多边形”标注的数据集。 方法2:修改数据集,使用矩形标注。然后再启动训练作业。 父主题: 业务代码问题
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port} \ max_out_len=${max_out_len}
}/ComfyUI python main.py --port ${port} --force-fp16 --listen ${container_ip_address} 参数说明: port:为启动镜像时映射port container_ip_address:为容器IP,如上图的172
sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ host=$host \ service_port=${service_port} \ max_out_len=${max_out_len}
sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ host=$host \ service_port=${service_port} \ max_out_len=${max_out_len}
对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 步骤三 修改config.yaml中的${command} 请根据步骤二 修改训练Yaml配置文件修改超参值后,修改config.yaml中的${comman
sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ host=$host \ service_port=${service_port} \ max_out_len=${max_out_len}
粘贴JSON文件的内容到DashBoards模板 修改视图名称,单击Import。 图3 修改视图名称 注意:如提示uid重复,则单击“Change uid”,修改json中的uid后单击“Import”。 图4 修改uid 导入成功后,在Dashboards下,即可看到导入的视图,单击视图即可打开监控。
sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ host=$host \ service_port=${service_port} \ max_out_len=${max_out_len}