检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
认证证书 合规证书 华为云服务及平台通过了多项国内外权威机构(ISO/SOC/PCI等)的安全合规认证,用户可自行申请下载合规资质证书。 图1 合规证书下载 资源中心 华为云还提供以下资源来帮助用户满足合规性要求,具体请查看资源中心。 图2 资源中心 销售许可证&软件著作权证书
准备图像分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。
3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
data_type Integer 数据类型。可选值如下: 0:OBS桶(默认值) 1:GaussDB(DWS)服务 2:DLI服务 3:RDS服务 4:MRS服务 5:AI Gallery 6:推理服务 schema_maps Array of SchemaMap objects 表格数据对应的schema映射信息。
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
data_type Integer 数据类型。可选值如下: 0:OBS桶(默认值) 1:GaussDB(DWS)服务 2:DLI服务 3:RDS服务 4:MRS服务 5:AI Gallery 6:推理服务 schema_maps Array of SchemaMap objects 表格数据对应的schema映射信息。
移的模型一键部署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转换后可以在昇腾上获得更好的性能,配合丰富的适配工具链,降低迁移成本,该工具在推理迁移工作的预置镜像已安装,可在镜像中直
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
Baichuan3-13B(PyTorch)基于DevServer训练指导 推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI) Open-Clip模型昇腾适配
duleNotFoundError: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0