检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
-user/work以外的目录,请将数据集等放到work路径下,不要放到非work路径下。 请不要将实例频繁保存镜像,建议一次将需要的安装包安装好,然后执行镜像保存,避免频繁执行镜像保存的动作,保存次数越多镜像越大,且多次保存后的镜像过大问题无法通过清理磁盘方式减少镜像的大小(Docker保存原理机制)。
授权API至APP 功能介绍 将指定的API授权给APP。API的认证方式必须为APP认证,APP的创建用户必须是API所属服务的创建者,且请求用户对API所属服务必须有更新权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动
因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶中,删除存储在OBS中的数据。操作完成后,OBS服务即停止计费。 对于使用专属资源池创建的自动学习作业:
工作空间 ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 工作空间支持3种访问控制: PUBLIC:租户(主账号和所有子账号)内部公开访问。 PRIVATE:仅创建者和主账号可访问。
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 M
进行精细的权限管理,您可以使用统一身份认证服务(Identity and Access Management,简称IAM),如果华为云帐号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用ModelArts服务的其它功能。 默认情况下,新建的IAM用户
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
Cluster或Lite Server时,所需的ECS实例数、内存大小、CPU核数和EVS硬盘大小等资源会超出华为云默认提供的资源配额,因此需要申请扩大配额。具体配额项如下。 表1 ModelArts Lite涉及的资源配额 服务 资源类型 ECS资源类型 ECS实例数 CPU核心数 RAM容量(MB)
04-x86_64 request_mode Array of strings 请求模式,AI引擎支持部署为同步在线服务或异步在线服务。 sync:同步在线服务 async:异步在线服务 accelerators Array of Accelerator objects AI引擎可使用的加速卡。
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers