检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
提示词比较支持选择两个候选提示词对其文本和参数进行比较,支持对选择的候选提示词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理
自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7.5e-05 学
自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate) 7.5e-05 学
规划和分配任务,使团队协作更加高效。 此外,平台配备了完善的角色权限体系,覆盖超级管理员、管理员、模型开发工程师等多种角色。通过灵活的权限设置,每位用户能够在其对应的权限范围内安全高效地操作平台功能,从而最大程度保障数据的安全性与工作效率。 父主题: 创建并管理盘古工作空间
操作。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图3 进入操作空间 单击左侧导航栏的“空间管理”,在“空间设置”页签中可执行如下操作: 可修改当前空间的名称与描述。 可查看当前空间的创建时间。 单击右上角“删除”,可删除当前空间。 删除空间属于高危
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content 是 String 对话的内容,可以是任意文本,单位token。 设置多轮对话时,message中content个数不能超过20。
在左侧导航栏中选择“数据工程 > 数据加工”,单击界面右上角“创建加工数据集”。 图2 数据加工 在“创建加工数据集”页面,选择需要加工的视频类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集
在左侧导航栏中选择“数据工程 > 数据加工”,单击界面右上角“创建加工数据集”。 图2 数据加工 在“创建加工数据集”页面,选择需要加工的气象类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集
在左侧导航栏中选择“数据工程 > 数据加工”,单击界面右上角“创建加工数据集”。 图2 数据加工 在“创建加工数据集”页面,选择需要加工的文本类数据集,并设置数据集的名称和描述。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集
的列表供选择。 单击“确定”,完成参数配置。 配置大模型组件 大模型组件提供了使用LLM的能力,用户可以通过在UI界面上编写Prompt、设置LLM的参数来让LLM完成指定的任务。 单击画布中的“大模型”组件,打开参数配置页面。 图5 查看大模型组件参数配置 在“参数配置”中,配置输入和输出参数。
在左侧导航栏中选择“数据工程 > 数据加工”,单击界面右上角“创建加工数据集”。 图2 数据加工 在“创建加工数据集”页面,选择需要加工的图片类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集
起报时间间隔小时数,默认6。取值范围:[1, 24]。 forecast_lead_hours 否 Long 预报未来小时数,默认168。如需预报未来30天,可将此参数设置成720。 draw_figures 否 String 是否输出结果图片,取值true/false,默认true。 forecast_features
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
可对部署任务执行执行描述、删除等操作。 管理NLP大模型部署任务 调用NLP大模型 使用“能力调测”调用NLP大模型 使用该功能调用部署后的预置服务进行文本对话,支持设置人设和参数等。 使用“能力调测”调用NLP大模型、《快速入门》“使用盘古预置NLP大模型进行文本对话” 使用API调用NLP大模型 可调用
错误码 当您调用API时,如果遇到“APIGW”开头的错误码,请参见API网关错误码进行处理。遇到“APIG”开头的错误码,请参考本文档进行处理。 表1 错误码 错误码 错误信息 说明 建议解决方法 PANGU.0001 unknown error. 未知错误。 请联系服务技术支持协助解决。
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型