检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
力与规格。 关于模型支持的训练数据量要求,例如NLP大模型,请参考《用户指南》“开发盘古NLP大模型 > 训练NLP大模型 > NLP大模型训练流程与选择建议”。 关于平台接入的数据格式要求,请参考《用户指南》“使用数据工程准备与处理数据集 > 数据集格式要求”。 平台上单个用户最多可创建和管理2000个模型实例。
单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。
变量权重 训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 数据配置 训练数据 选择数据集中已发布的数据集,这里数据集需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练集 选择训练数据中的部分时间数据,训练数据集尽可能多一些。
描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在
盘古大模型分为模型订阅服务、训练服务和推理服务三个收费项。 模型订阅服务按照订阅时长计费,提供3个月与1年两种周期供客户选择,自支付完成开始计费。 数据智算服务、数据通算服务、数据托管服务按服务的单元数量和时长计费,时长精确到秒。 模型训练服务按服务的单元数量和时长计费,时长精确到秒。 模型推理服务按服务的单元数量和时长计费,时长精确到秒。
对选择的候选提示词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理 提示词管理支持用户对满意的候选
标注审核员 拥有数据工程数据标注-标注审核模块的所有权限,其余角色不具备。 评估管理员 拥有数据工程数据评估-评估标准模块的所有权限,其余角色不具备。 评估作业员 拥有数据工程数据评估-评估作业模块的所有权限,其余角色不具备。 数据导入员 拥有数据工程数据获取-数据导入模块的所有权限,其余角色不具备。
在“详情”页签,可获取API的URL。 图2 获取已部署模型的调用路径 调用预置服务。在“预置服务”页签中,选择所需调用的NLP大模型,单击“调用路径”,在“调用路径”弹窗获取调用路径。 图3 获取预置服务调用路径 获取Token。参考《API参考》文档“如何调用REST API
微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答
配置OBS访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 登录ModelArts Studio大模型开发平台首页。
请注意,所选的数据集必须包含您想要添加的新要素。此外,您还可以通过训练更改所有的模型参数,以优化模型性能。 微调:微调是将新数据应用于已有模型的过程。它适用于不改变模型结构参数和引入新要素的情况。如果您有新的观测数据,可以使用微调来更新模型的权重,以适应新数据。 区域中期海洋智能预测模型的训练类型选择建议:
盘古科学计算大模型能力与规格 盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过 AI 模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开
页签中,可获取模型的请求URI。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页签,模型列表单击“调用路径”,获取该模型的请求URI。 图2 预置模型的调用路径 父主题: 使用前必读
创建原始数据集 数据集是指用于模型训练或评测的一组相关数据样本,上传至平台的数据将被创建为原始数据集进行统一管理。 上线原始数据集 在正式发布数据集前,需要执行上线操作。 加工数据集(可选) 创建数据集加工任务 数据集中若存在异常数据,可通过数据集加工功能去除异常字符、表情符号、个人敏感内容等。
页签中,可获取模型的请求URI。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页签,模型列表单击“调用路径”,获取该模型的请求URI。 图2 预置模型的调用路径 父主题: 附录
'EQUAL-TO'}]}}"} 数据量级要求:本场景使用了30000条数据进行微调。 类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “
测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 大模型微调训练类问题
als.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推理SDK章节示例代码均以ak和sk保存在环境变量中来实现身份验证。 登录“我的凭证”页面,获取“IAM用户