检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/v2/{project_id}/workflows/todolist 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 workspace_id 否 String
--gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-executor-backend:多卡推理启动后端,可选值为"ray"或者"mp",其中"ray"表示
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
日志提示“label_map.pbtxt cannot be found” 问题现象 使用目标检测算法训练时,训练作业日志运行出现如下报错:ERROR:root:label_map.pbtxt cannot be found. It will take a long time to
ls/{nodepool_name}/nodes 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 nodepool_name 是 String
/v2/{project_id}/pools/{pool_name}/nodes 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 表2 Query参数 参数 是否必选 参数类型
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
device异常。 NPU设备异常,昇腾dcmi接口中返回设备存在重要或紧急告警。 A050123 NPU 链路 npu dcmi net异常。 NPU网络链接异常。 A050129 NPU 其他 NPU其他错误。 检测到的其他NPU错误,通常为不可自纠正的异常,请联系技术人员支持。 A050149
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-3rdLLM-6.3.905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
--gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-executor-backend:多卡推理启动后端,可选值为"ray"或者"mp",其中"ray"表示
GET /v1/{project_id}/events 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 resource 是 String 事
精度对齐 精度问题是指模型从GPU设备迁移到昇腾NPU设备之后由于软硬件差异引入的精度问题。根据是否在单卡环境下,可分为单卡精度问题与多卡精度问题。多卡相对于单卡,会有卡与卡之间的通信,这可能也是精度偏差的一种来源。所以多卡的精度对齐问题相对于单卡会更复杂。不过针对多卡的精度问题
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
可能是亚健康,建议先重启节点,若重启节点后未恢复,发起维修流程。 NT_NPU_NET NPU 链路 npu dcmi net异常。 NPU网络链接异常。 可能是亚健康,建议先重启节点,若重启节点后未恢复,发起维修流程。 NT_NPU_CARD_LOSE NPU 掉卡 NPU卡丢失。