检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
spec 是 NodePoolSpec object 更新节点池的请求体。 表4 NodePoolSpec 参数 是否必选 参数类型 描述 resources 是 PoolResource object 节点池中的资源信息列表,包括资源规格和相应规格的资源数量,自定义配置等。 表5 PoolResource
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
在创建算法时,您需要在输入路径配置中设置代码路径参数,默认为“data_url”。 您需要在训练代码中添加超参,默认为“data_url”。使用“data_url”当做训练数据输入的本地路径。 检查报错的路径是否存在 由于用户本地开发的代码需要上传至ModelArts后台,训练代码中涉及到依赖文件的路径时,用户设置有误的场景较多。
ig_pip_str设置对应的代理和pip源,来确保当前代理和pip源可用。 精度评测新建一个conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。命令中的$work_dir 是benchmark_eval的绝对路径。 conda
ig_pip_str设置对应的代理和pip源,来确保当前代理和pip源可用。 精度评测新建一个conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。命令中的$work_dir 是benchmark_eval的绝对路径。 conda
本方案介绍了在ModelArts的DevServer上使用昇腾Atlas 300I Duo推理卡计算资源,部署Bert-base-chinese模型推理的详细过程。完成本方案的部署,需要先联系您所在企业的华为方技术支持购买DevServer资源。 本方案目前仅适用于企业客户。 资源规格要求 推荐使用
“输入”区域选择推理需要使用到的资源规格,完成后选择“继续运行”,等待服务部署完成。 计算节点规格:华北-北京四可支持限时免费的规格,但每个用户仅允许创建一个基于此免费规格的实例。 按需计费规格,使用完之后请及时停止Workflow,避免产生不必要的费用。 测试推理服务:工作流运
smn:topic:publish obs:object:PutObject obs:object:GetObject obs:object:GetObjectVersion obs:bucket:HeadBucket obs:object:DeleteObject obs:object:GetObject
BS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 Step1 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。 镜像选择已注册的自定义镜像,资源类型选择创建好的专属资源池,资源规格推荐选择“Ascend:
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四
String Workflow工作流配置参数的描述。 example Object Workflow工作流配置参数的样例。 delay Boolean 是否为延迟输入的参数,默认为否。 default Object 配置参数的默认值。 value Object 参数值。 enum Array
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。
error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 为指定的Notebook添加资源标签。例如设置TMS标签的key为“test”,value为“service-gpu”。 https://{endpoint}/v1/{pr
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明
resources 是 PoolResource object 节点池中的资源信息列表,包括资源规格和相应规格的资源数量,自定义配置等。 表6 PoolResource 参数 是否必选 参数类型 描述 flavor 是 String 资源规格名称,比如:modelarts.vm.gpu
需要,自行购买适用规格的套餐包。 适用场景 ModelArts服务支持购买套餐包,根据用户选择使用的资源不同进行收费。您可以根据业务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习和深度学习的算法开发及部署全功能
请根据界面提示,填写必选参数,然后单击“下一步”。 在“加入用户组”步骤中,选择“用户组02”,然后单击“创建用户”。 系统将逐步创建好前面设置的2个用户。 父主题: 配置ModelArts基本使用权限
否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。