检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
harm连接)。此时单击该实例名称,实例会变为绿色勾状态,表示PyCharm已与实例连接成功。 图21 实例运行中状态 停止Notebook实例。 当Notebook实例为绿色勾状态时,表示该实例运行中且与PyCharm连接成功。此时单击该实例名称,实例会变为黄色感叹号状态,表示停止Notebook实例。
metadata 参数 参数类型 描述 name String 节点名称。 creationTimestamp String 创建时间。 表7 NodeSpec 参数 参数类型 描述 flavor String 节点规格。 表8 NodeStatus 参数 参数类型 描述 phase String
otebook实例。 创建成功后,Notebook实例的状态为“运行中”,单击操作列的“打开”,访问JupyterLab。 图2 打开Notebook实例 进入JupyterLab页面后,自动打开Launcher页面,如下图所示。您可以使用开源支持的所有功能,详细操作指导可参见JupyterLab官网文档。
是否必选 参数类型 描述 limit 否 Integer 返回的数据条目数。 offset 否 Integer 数据条目偏移量。 请求参数 无 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 total Integer 超参搜索所有trial结果的个数。 count
查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令是一种基于ICMP协议(Internet Control Message Protocol)的网络诊断工具,利用ICMP协议向目标主机发送数据包并接收返回的数据包来判断网络连接质量。当安全组的入方向
print(dataset_list) 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法请参见Session鉴权。 dataset_type 否 Integer 根据数据集类型查询数据集列表,默认为空。可选值如下: 0:图像分类 1:物体检测
度更高的模型。首先,针对智能标注和采集筛选任务,难例的发现操作是系统自动执行的,无需人工介入,仅需针对标注后的数据进行确认和修改即可,提升数据管理和标注效率。其次,您可以基于难例的情况,补充类似数据,提升数据集的丰富性,进一步提升模型训练的精度。 在数据集管理中,对难例的管理有如下场景。
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提
原因分析 因为编译的时候需要设置setup.py中编译的参数arch和code和电脑的显卡匹配。 解决方法 对于GP Vnt1的显卡,GPU算力为-gencode arch=compute_70,code=[sm_70,compute_70],设置setup.py中的编译参数即可解决。
池支持的作业类型进行编辑(新增或减少)。当前支持的“作业类型”有“训练作业”、“推理服务”和“开发环境”,用户可按需自行选择。 设置某一作业类型后,即可在此专属资源池中下发此种类型的作业,没有设置的作业类型不能下发。 为了支持不同的作业类型,后台需要在专属资源池上进行不同的初始化
enizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练
通过Function Calling扩展大语言模型对外部环境的理解 本示例将展示如何定义一个获取送货日期的函数,并通过LLM来调用外部API来获取外部信息。 操作步骤 设置Maas的api key和模型服务地址。 import requests from openai import
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-m
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-m
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-m
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-m
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-m
通过VPC访问通道的方式访问在线服务 背景说明 如果您希望在自己账号的VPC内部节点访问ModelArts推理的在线服务,可以使用VPC访问通道的功能,用户通过在自己账号的指定VPC下创建终端节点,连接到ModelArts的终端节点服务,即可在自己的VPC节点中访问在线服务。 约束限制
Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即模型管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、P
String>类型。对于数据预处理任务比较特殊的两个场景物体检测和图像分类,键“task_type”对应的值为“object_detection”或“image_classification”。 表6 WorkPath 参数 参数类型 描述 name String 数据集的名称。 output_path