检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"T", "U", "V", "Z"]} geo_range:定义了数据覆盖的地理范围,纬度(lat)从-90.0到90.0,经度(lon)从0.0到360.0。 time_range:数据的时间范围,时间戳格式为毫秒数。 total_size:数据文件的总大小,单位为字节。 sur
科学计算大模型的全球中期天气要素预测模型、降水模型,可以对未来一段时间的天气和降水进行预测,具备以下优势: 高时间精度:全球中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况,降水模型可预测未来6小时的降水情况。高时间精度对于农业、交通、能源等领域的决策和规划非常重要。 全球
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
设置背景及人设 背景: 模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或
类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连续变量的值,与时序数据不同,回归分类数据不要求数据具有时间顺序。 具体格式要求详见表1。 表1 预测类数据集格式要求
'ext': 'mp4',//视频文件扩展名。 // 标注 34.5, 42.4 分别表示起始时间和结束时间,单位为s。 // label 表示分类,必须是classes列表中的一个元素,表示该视频片段对应的事件或动作类型。
表1 NLP大模型能力调测参数说明 参数 说明 搜索增强 搜索增强通过结合大语言模型与传统搜索引擎技术,提升了搜索结果的相关性、准确性和智能化。 例如,当用户提出复杂查询时,传统搜索引擎可能仅返回一系列相关链接,而大模型则能够理解问题的上下文,结合多个搜索结果生成简洁的答案,或
下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。 与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。
> 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时,表示模型已成功部署。此过程可能需要较长时间,请耐心等待。 可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情 父主题: 部署科学计算大模型
请参考《API文档》检查请求参数中输入的token数值是否不在范围内,并重新调试API。 PANGU.3318 tolal ContentLength Illegal. Content长度不合法 请参考《API文档》检查请求参数中输入的Content参数长度是否不在范围内,并重新调试API。 PANGU.3319
训练科学计算大模型训练数据要求所需数据量 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求 模型类别 特征要求 水平分辨率要求 区域范围要求 时间要求 数据获取方式 气象/降水模型 需包含4个表面层特征(10m u风、10m v风、2米温度、海平面气压),13高空层次(1000、
String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1, 24]。
选择数据集中已发布的数据集,这里数据集需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练集 选择训练数据中的部分时间数据,训练数据集尽可能多一些。 验证集 选择验证集中的部分时间数据,验证集数据不能跟训练集数据重合。 层次 设置训练数据的层次信息。在“预训练”场景中,可以添加或去除高空
支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m u风、10m
水模型,可以对未来一段时间的天气和降水进行预测,全球中期天气要素模型和降水模型能够在全球范围内进行预测,不仅仅局限于某个地区。它的分辨率相当于赤道附近每个点约25公里x25公里的空间。通过降水模型预测未来的降雨情况,农民和农业管理者可以更有效地规划灌溉时间和频率,也能为可能发生的
String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1, 24]。
中date列为日期列,默认设置为[],表示没有日期列,选择全部数据做训练。 标识列 在时间序列中可以定义粒度的id相关的列。 历史窗口大小 指模型在训练时基于多少个历史数据点作为输入。取值范围为[2, 200],默认值为7,表示使用7个历史数据点作为输入进行训练。 资源配置 训练单元
对视频的涉黄程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为涉黄视频。 视频暴恐评分 对视频的暴恐程度进行评分,分数越高越危险。评分范围(0, 100),评分≥50分的视频可视为暴恐视频。 视频涉政评分 对视频的涉政程度进行评分,分数越高越危险。评分范围(0, 100),评分≥90分的视频可视为涉政视频。
去除重复数据:确保数据集中每条数据的唯一性。 填补缺失值:填充数据中的缺失部分,常用方法包括均值填充、中位数填充或删除缺失数据。 数据标准化:将数据转换为统一的格式或范围,特别是在处理数值型数据时(如归一化或标准化)。 去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,
程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也可以利用外部web搜索引擎。在初步验证大模型效果时,可以假设检索出的文档完全相关,将其与query及特定prompt模板拼接后输入模型,观察输出是否符合预期。 选择基模型/基础功能模型