检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
误后,单击“提交”,完成Notebook的创建操作。 进入Notebook列表,正在创建中的Notebook状态为“创建中”,创建过程需要几分钟,请耐心等待。 当Notebook状态变为“运行中”时,表示Notebook已创建并启动完成。单击“操作列”的“打开”,进入JupyterLab的Launcher界面。
mrs:job:batchDelete(批量删除作业) mrs:file:list(查询文件列表) 在工作流中集成MRS 表7 管理模型 业务场景 依赖的服务 依赖策略项 支持的功能 管理模型 SWR SWR Admin 从自定义镜像导入、从OBS导入时使用自定义引擎。 SWR共享版不支持细粒度权限项,因此需要配置Admin权限。
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
taset参数配置,修改代码目录下accuracy_cfgs.yaml或performance_cfgs.yaml文件内容,参数详解可参考表1。 # 默认参数;根据自己实际要求修改 ## accuracy_cfgs.yaml、performance_cfgs.yaml dataset_dir:
taset参数配置,修改代码目录下accuracy_cfgs.yaml或performance_cfgs.yaml文件内容,参数详解可参考表1。 # 默认参数;根据自己实际要求修改 ## accuracy_cfgs.yaml、performance_cfgs.yaml dataset_dir:
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
lbl = preprocessing.LabelEncoder() train_x['acc_id1'] = lbl.fit_transform(train_x['acc_id1'].astype(str)) 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环
步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。 Ascend: 8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。
步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。 Ascend: 8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。
参数配置完成后,单击“提交”,创建部署任务。 在任务列表,当模型“状态”变成“运行中”时,表示模型部署完成。 步骤3:在模型体验使用模型服务 在ModelArts Studio左侧导航栏中,选择“模型部署”进入服务列表。 在“模型部署”页面,单击“我的服务”页签,然后在服务列表选择目标模型服务,单击操作列“更多
本文档适配昇腾云ModelArts 6.3.907版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径
模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。
Ascend: 1*ascend-snt9b表示Ascend单卡。 Ascend: 8*ascend-snt9b表示Ascend 8卡。 购买并开通资源 如果使用Cluster资源,请先阅读Lite Cluster资源开通,熟悉集群资源开通流程,再开始操作购买k8s Cluster资源。
Ascend: 1*ascend-snt9b表示Ascend单卡。 Ascend: 8*ascend-snt9b表示Ascend 8卡。 购买并开通资源 如果使用Cluster资源,请先阅读Lite Cluster资源开通,熟悉集群资源开通流程,再开始操作购买k8s Cluster资源。
Standard上,利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,完成SDXL Finetune训练。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-3rdAIGC-6.3.905-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Hug
模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。