检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
jobs 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 说明 status 否 String 作业状态的查询,默认为所
您未被授权执行该操作。 订阅已过期。执行同步操作时报错:ModelArts.5055: 订阅已过期。 处理方法 在权限管理页面进行依赖服务的授权。完成委托授权请参考了解ModelArts权限配置。 检查是否有OBS权限或者接口操作权限。 订阅已过期,可以在AI Gallery确认可以续订后,重新订阅。
MANAGED:托管,即资源在服务上。 DEDICATED:非托管,即资源在用户账号上,只有在category为EFS时支持。 status String EVS扩容状态,扩容时的状态为RESIZING,此时实例可以正常使用。 表16 user 参数 参数类型 描述 domain domain object 账号domain信息
告警及时响应。 ModelArts承载关键业务的对外开放EIP部署了高防服务,以防大流量攻击。 ModelArts对存放关键数据的数据库部署了数据库安全服务。 云服务防抖动和遭受攻击后的应急响应/恢复策略 ModelArts服务具备租户资源隔离能力,避免单租户资源被攻击导致爆炸半径大,影响其他租户。
figs 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求消息 请求参数如表2所示。 表2 参数说明 参数 是否必选 参数类型 说明 config_name 是 String
{nodepool_name} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 nodepool_name 是 String 节点池名称。
ions 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 job_id 是 Long 训练作业的ID。 请求消息 请求参数如表2所示。 表2 请求参数 参数 是否必选 参数类型
附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
libgoogle-glog-dev liblmdb-dev libatlas-base-dev librdmacm1 libcap2-bin libpq-dev mysql-common net-tools nginx openslide-tools openssh-client openssh-server
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过torch
创建文件越快,越容易触发(机制大概是:有一个缓存,这块大小和上面的1和2有关,目录下文件数量比较大时会启动,使用方式是边用边释放) 处理方法 可以参照日志提示"write line error"文档进行修复。 如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触
13 JOBSTAT_CANCELED,作业取消。 14 JOBSTAT_LOST,作业丢失。 15 JOBSTAT_SCALING,作业正在扩容。 16 JOBSTAT_SUBMIT_MODEL_FAILED,提交模型失败。 17 JOBSTAT_DEPLOY_SERVICE_FAILED,部署服务失败。
数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','Pret
训练作业运行失败排查指导 问题现象 训练作业的“状态”出现“运行失败”的现象。 原因分析及处理方法 查看训练作业的“日志”,出现报错“MoxFileNotExistsException(resp, 'file or directory or bucket not found.')”。
import_origin 否 String 数据来源。可选值如下: obs:OBS桶(默认值) dws:GaussDB(DWS)服务 dli:DLI服务 rds:RDS服务 mrs:MRS服务 inference:推理服务 import_path 是 String 导入的OBS路径或manifest路径。
failed","words_result": {}}。 图1 预测报错 原因分析 请在“在线服务”详情页面的日志页签中查看对应的报错日志,分析报错原因。 图2 报错日志 从上图报错日志判断,预测失败是模型推理代码编写有问题。 解决方法 根据日志报错提示,append方法中缺少必填参数,
数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','Pret