检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
文本与标签分割符”与“多标签分割符”不能选同一个。 “模式”:选择“文本和标注合并”或“文本和标注分离”模式。界面中已给出示例,请参考示例判断需添加的文件属于哪一种模式。 “文本与标签分隔符”:可设置为“Tab键”、“空格”、“分号”、“逗号”或“其他”。选择“其他”时,可以在右侧文本框中输入对应的分隔符。
在“模型评估”页面,您可以查看测试集中数据模型预测结果。 “详细评估”左侧选择文本,右侧显示模型预测的实体抽取结果和正确的抽取结果,您可以判断当前模型抽取的实体是否正确。 图2 详细评估 后续操作 针对当前版本的模型,经过“整体评估”和“详细评估”后,如果根据业务需求,模型还需继
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
在“模型评估”页面,您可以搜索查看测试集中数据模型预测结果。 “详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显
在“模型评估”页面,您可以搜索查看测试集中数据模型预测结果。 “详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
<filename>image_0006.jpg</filename> <source> <database>Unknown</database> </source> <size> <width>512</width>
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。 基本概念 参照字段为模板图片和待识别图片中的公共文字部分,所有需要识别的图片中都要包含参照字段,且位置必须固定。
后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。 基本概念 参照字段为模板图片和待识别图片中的公共文字部分,所有需要识别的图片中都要包含参照字段,且位置必须固定。
准备数据 在使用云状识别工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计云状标签 首先需要考虑好云状标签,即希望识别出云状的一种结果。例如可以以“cumulus”(积云)、“stratus”(层云)、“cumulonimbus”(积雨云)等分别作为云状的种类。
准备数据 在使用刹车盘识别工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计刹车盘标签 首先需要考虑好刹车盘的标签类型,即希望识别出图片中刹车盘的一种结果。例如可以以“ventilation”(通风)、“physical”(实体)等分别作为刹车盘的类别。
准备数据 在使用通用图像分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计图像分类标签 首先使用的数据需要考虑好分类的标签类型,即希望识别出图片中的一种结果。例如对天气现象图片进行分类时,标签可以以“snow”(雪)、“rainy”(雨)等作为分类的类别。
集中数据模型预测结果。 “详细评估”左侧在搜索框中搜索标签,右侧显示正确标签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型预测该样本是否预测正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显
更新应用版本 一个模型很难一次性就训练到最佳的效果,可能需要结合模型评估报告和校验结果不断扩充数据和调优。 因此ModelArts Pro提供版本更新的功能,首次版本为v1,然后v2、v3......以此类推。可以通过调整训练数据和算法,多次训练,获得更好的模型效果。 每修改一次
更新应用版本 一个模型很难一次性就训练到最佳的效果,可能需要结合模型评估报告和校验结果不断扩充数据和调优。 因此ModelArts Pro提供版本更新的功能,首次版本为v1,然后v2、v3......以此类推。可以通过调整训练数据和算法,多次训练,获得更好的模型效果。 每修改一次
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在ModelArts
视觉套件(使用零售商品识别工作流开发应用) ModelArts Pro的视觉套件提供了零售商品识别工作流,自主构建高精度的商品识别算法,帮助提高商品新品上线效率,提升消费者体验。 本章节介绍如何使用视觉套件中的零售商品识别工作流开发应用,以蛋糕店的蛋糕商品为样例,通过上传训练数据