检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
面,数据标注的图片来源有两种,通过本地添加图片和同步OBS中的图片数据。 图3 添加本地图片 图4 同步OBS图片数据 添加数据:您可以将本地图片快速添加到ModelArts,同时自动上传至创建项目时所选择的OBS路径中。单击“添加数据”,根据弹出的对话框的引导,输入正确的数据并添加。
PUBLIC:租户(主账号和所有子账号)内部公开访问。 PRIVATE:仅创建者和主账号可访问。 INTERNAL:创建者、主账号、指定IAM子账号可访问当授权类型为INTERNAL时需要指定可访问的子账号的账号名,可选择多个。 每个账号每个IAM项目都会分配1个默认工作空间,默认工作空间的访问控制为PUBLIC。
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。
在“声音分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 训练完成后,您可以单击声音分类节点上方的按钮,查看相关指标信息,如“准确率”、“评估结果”等。 表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。
执行添加团队操作添加。 添加团队 在ModelArts管理控制台左侧导航栏中,选择“数据准备>标注团队”,进入“标注团队”管理页面。 在“标注团队”管理页面,单击“添加团队”。 在弹出的“添加团队”对话框中,填写团队“名称”和“描述”,然后单击“确定”。完成标注团队的添加。 团队
matmul、swiglu、rope等算子性能提升,支持vllm推理场景 支持random随机数算子,优化FFN算子,满足AIGC等场景 支持自定义交叉熵融合算子,满足BMTrain框架训练性能要求 优化PageAttention算子,满足vllm投机推理场景 支持CopyBlocks算子,满足vllm框架beam
时指定的OBS路径。 如果您创建的Notebook使用EVS存储实例时 单击“upload”后,数据将直接上传至当前实例容器中,即在“Terminal”中的“~/work”目录下。 父主题: 文件上传下载
更多功能咨询 在Notebook中,如何使用昇腾多卡进行调试? 使用Notebook不同的资源规格,为什么训练速度差不多? 使用MoXing时,如何进行增量训练? 在Notebook中如何查看GPU使用情况 如何在代码中打印GPU使用信息 Ascend上如何查看实时性能指标? 不
AI识别可以单独针对一个标签识别吗? ModelArts如何通过标签实现资源分组管理 为什么资源充足还是在排队? 规格中数字分别代表什么含义? 如何删除预置镜像中不需要的工具
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。
景的深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg