检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
重启3次。 为了避免丢失训练进度、浪费算力,开启此功能前请确认代码已适配断点续训,操作指导请参见设置断点续训练。 当训练过程中触发了自动重启,则系统会记录重启信息,在训练作业详情页可以查看故障恢复详情,具体请参见训练作业重调度。 开启无条件自动重启 开启无条件自动重启有2种方式:控制台设置或API接口设置。
AIGC代码包:AscendCloud-AIGC CV代码包:AscendCloud-CV 算子依赖包:AscendCloud-OPP 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
AIGC代码包:AscendCloud-AIGC CV代码包:AscendCloud-CV 算子依赖包:AscendCloud-OPP 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
软件包,请严格遵照版本配套关系使用本文档。 推理部署使用的服务框架是vLLM。vLLM支持v0.5.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件
日志提示“Please set the train_url to an empty obs directory” 问题现象 日志提示“Please set the train_url to an empty obs directory”。 原因分析 对于不支持断点训练的模型,若选
需要访问宿主机上Docker引擎内部数据结构的容器工作负载。 节点存储。多个容器可能会共享这一个存储,会存在写冲突的问题。 Pod删除后,存储不会清理。 使用主机路径 OBS 适用于训练数据集的存储。 对象存储。常用OBS SDK进行样本数据下载。存储量大,但是离节点比较远,直接训练速度会比较慢,
k8s Cluster和昇腾Snt9B资源。 本文档中的CCE集群版本选择v1.27~1.28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.3版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23
在更改部分数据和标注信息后,进行增量训练。 “mox.run”添加增量训练参数 在完成标注数据或数据集的修改后,您可以在“mox.run”中,修改“log_dir”参数,并新增“checkpoint_path”参数。其中“log_dir”参数建议设置为一个新的目录,“checkp
导航栏中的“VPC 终端节点>终端节点”,进入“终端节点”页面。 单击右上角的“购买终端节点”,进入购买页面。 区域:终端节点所在区域。 不同区域的资源之间内网不互通,请确保与ModelArts所在区域保持一致。 服务类别:请选择“按名称查找服务”。 服务名称:填入步骤1中获取的
k8s Cluster和昇腾Snt9B资源。 本文档中的CCE集群版本选择v1.27~1.28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23
后,CCE会对这些节点进行纳管,并且ModelArts会在CCE集群中安装npuDriver、os-node-agent等插件。完成Cluster资源池的购买后,您即可对资源进行配置,并将数据上传至存储云服务中。当您需要使用集群资源时,可以使用kubectl工具或k8s API来
matmul、swiglu、rope等算子性能提升,支持vllm推理场景 支持random随机数算子,优化FFN算子,满足AIGC等场景 支持自定义交叉熵融合算子,满足BMTrain框架训练性能要求 优化PageAttention算子,满足vllm投机推理场景 支持CopyBlocks算子,满足vllm框架beam
费。 如果运行Notebook实例时,使用公共资源池进行模型训练和推理,计算资源需收费。 存储资源费用:数据存储到对象存储OBS、云硬盘EVS、弹性文件服务SFS中的计费。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。 具
device_map set quantized_model.to("cpu") quantized_model.save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config
device_map set quantized_model.to("cpu") quantized_model.save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config
device_map set quantized_model.to("cpu") quantized_model.save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config
device_map set quantized_model.to("cpu") quantized_model.save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config
device_map set quantized_model.to("cpu") quantized_model.save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config
device_map set quantized_model.to("cpu") quantized_model.save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config
device_map set quantized_model.to("cpu") quantized_model.save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config