检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的数据集训练子模型。 训练模型文件则定义了模型的结构,会用于每个参与方在本地初始化模型。 图2 配置执行脚本、训练模型文件 配置已方、对方数据集。在作业的数据集配置中,选择己方、对方的本地数据集,此外需将已方的数据集设为评估数据集。横向联邦中,需要确保不同参与方的数据集结构完全一致。
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
选择待处理的审批记录,单击“查看详情”。 填写审批意见,单击“同意”。 图1 填写审批意见 启动数据初始化 审批通过后,发起方可以在实时隐匿查询页面作业列表中单击“启动数据初始化”。 父主题: 实时隐匿查询
发送的实体的MIME类型 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 description String 数据集描述 privacies Array of PrivacyVo objects 字段隐私信息 表4 PrivacyVo 参数 参数类型 描述 comments
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照1~4提供的案例和SQL语句进行作业测试。 图2 作业界面 假设有人输入以下代码试图直接查询敏感数据。 select tax_bal
当计算节点执行横向联邦训练型作业时,若执行脚本中包含恶意行为,包含但不限于非授权访问其他作业数据、篡改文件和配置、恶意消耗容器资源等场景时,会影响到数据提供方的计算环境安全以及其他学习作业的正常执行。 针对该问题,在边缘节点部署场景中,TICS通过构建Python安全沙箱来单独运
String 发送的实体的MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 instance_id 否 String 实例id,最大32位,由字母和数字组成 job_instance_type 否 String 纵向联邦作业类型。 SQL, HFL, VFL_TRAIN
表2 Query参数 参数 是否必选 参数类型 描述 job_instance_type 是 String 作业实例类型,最大长度32 VFL_SAMPLE_ALIGNMENT 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String
String 发送的实体的MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 instance_id 否 String 实例id,最大32位,由字母和数字组成 job_instance_type 是 String 纵向联邦作业类型 SQL, HFL, VFL_TRAIN
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 产品架构 产品架构如图1所示。 图1 产品架构 空间管理 邀请云租户作为数据提供方
根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 datasets 是 String 每个可信计算节点的数据集名 features 否 Array of DatasetFeatureEntity
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
FlJobListVo 参数 参数类型 描述 description String 作业描述,最大值512 job_id String 作业id,最大长度32 job_name String 作业名称,最大长度128 job_type String 作业类型。作业类型:SQL.联合SQL分析
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划分,使用TICS的用户主要可以分为以下两类。
空间成员完成计算节点部署,配置参数时选择存储方式和数据目录,参考4.1 部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在数据目录中完成数据发布,参考4.6.4 发布数据。 对接MA的计算节点如果是使用子账号进行创建的,需要参考配置CCE集群子账号权限给子账号增加“管理员权限”配置。
前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 在调用可信智能计算服务TICS API之前,请确保已经充分了解可信智能计算服务TICS相关概念,详细信息请参见产品介绍。