检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
决。 在训练详情页左下方单击训练输出路径,如图4所示,跳转到OBS目录,查看是否存在model文件夹,且model文件夹中是否有生成训练模型。如果未生成model文件夹或者训练模型,可能是训练输入数据不完整导致,请检查训练数据上传是否完整,并重新训练。 图4 训练输出路径 Step5
即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数(支持预训练、LoRA微调、SFT微调)。 如果要使用自动重启功能,资源规格必须选择八卡规格。
户代码和ModelArts Standard后台交互的桥梁。 代码目录路径 您需要在OBS桶中指定代码目录,并将训练代码、依赖安装包或者预生成模型等训练所需文件上传至该代码目录下。训练作业创建完成后,ModelArts会将代码目录及其子目录下载至后台容器中。 例如:OBS路径“o
的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite pipeline输出的结果图片进行对比,在这里保证输
更换密钥后重新连接实例。 本地排查 检查配置是否正确。 打开config文件进行检查:Host必须放在每组配置的第一行,作为每组配置的唯一ID。 HOST remote-dev hostname <instance connection host> port <instance
如果进行了加密还需要进行解密操作 session = Session(access_key=__AK,secret_key=__SK, project_id='***', region_name='***') session.download_data(bucket_path="/bucket_name/obs_file
在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 OBS上传文件的规范: 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。 如需要提前上传待标注的文件,请创建一个空文件夹,然后将文本文件保存在该文件夹下,文本文件的目录结构如:“/bucketName/data/text
用户”即可。 “授权对象” “授权对象类型”选择“所有用户”时不涉及此参数。 IAM子用户:选择指定的IAM子用户,给指定的IAM子用户配置委托授权。 图1 选择IAM子用户 联邦用户:输入联邦用户的用户名或用户ID。 图2 选择联邦用户 委托用户:选择委托名称。使用账号A创建一
scripts/llama2/0_pl_pretrain_70b.sh xx.xx.xx.xx 8 7 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致;其中MASTER_ADDR、 NODE_RANK、 NODE_RANK 为必填。 单机启动 对于Llama2-
Workflow运行流程 项目类型介绍 图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“
文件数量等。通过右侧的“重试”或“删除”可以管理已发布的数据集。 “我的下载”:可以查看个人下载的数据集信息。单击下拉三角,可以查看数据集ID、下载方式、目标区域等信息。 我的资产 > Notebook 展示个人发布的Notebook实例列表。 “我的发布”:可以查看实例浏览量、
加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查启动推理服务章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用aut
者对模型了解不多的情形下都推荐使用预检工具,检查第一个步骤或Loss明显出现问题的步骤。它可以抓取模型中API输入的数值范围,根据范围随机生成输入,用相同的输入分别在NPU(GPU)和CPU上执行算子,比较输出差异。预检最大的好处是,它能根据算子(API)的精度标准来比较输出结果
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
ffusion_checkpoint_to_onnx.py脚本中,可以通过执行以下命令生成onnx模型。其中,model_path指定pytorch的模型根目录,output_path指定生成的onnx模型目录。 cd /home_host/work python diffuse
加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错
即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数。可以通过训练脚本中的SAVE_INTERVAL参数来指定间隔多少step保存checkpoint。
加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错