检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"endpoints": [ { "region_id": "cn-north-1", ...... 当接口调用出错时,会返回错误码及错误信息说明,错误响应的Body体格式如下所示。 {
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
“数据集输入位置”:AI Gallery的数据集下载到OBS的路径,此位置会作为数据集的数据存储路径,数据集输入位置不能和输出位置相同。 “名称”默认生成“data-xxxx”形式的数据集名称,该数据集将同步在ModelArts数据集列表中。 “描述”可以添加对于该数据集的相关描述。 图2 下载数据集(至ModelArts)
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
运行完后,在当前目录下会生成ascend_vllm文件夹,即为昇腾适配后的vLLM代码。 将生成的ascend_vllm文件夹从ECS中取出并上传至OBS中。 Step10 通过openssl创建SSL pem证书 在ECS中执行如下命令,会在当前目录生成cert.pem和key
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。经常不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的
A050149 NPU 链路 hccn tool网口闪断检查。 NPU网络不稳定,存在闪断情况。通过“hccn_tool-i ${device_id} -link_stat -g”查看24小时内闪断5次以上。 A050951 NPU 显存 NPU ECC次数达到维修阈值。 NPU的HBM
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
单击“Load”,上传.pem密钥(即在创建Notebook实例时创建并保存的密钥对文件)。 单击“Save private key”,保存生成的.ppk文件。.ppk文件的名字可以自定义,例如key.ppk。 图2 将密钥对.pem文件转成.ppk文件 Step3 使用SSH工具连接云上Notebook实例
指定对应Dump数据目录后进行比对分析。 msprobe -f pytorch compare -i ./compare.json -o ./output -s 生成CSV分析表格之后进行分析,该问题第一个偏差来源如下: Tensor.__getitem__.0 在forward阶段的第一个输入存在偏差,追溯输入来源发现是torch
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 提交训练作业,训练完成后,生成的权重文件自动保存在SFS Turbo中,保存路径为:/home/ma-user/work/llm_train/saved_dir_for
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录