检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
NPU服务器上配置Lite Server资源软件环境 注意事项 本文旨在指导如何在Snt9b裸金属服务器上,进行磁盘合并挂载、安装docker等环境配置。在配置前请注意如下事项: 首次装机时需要配置存储、固件、驱动、网络访问等基础内容,这部分配置尽量稳定减少变化。 裸机上的开发形
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
模型训练存储加速 针对AI训练场景中大模型Checkpoint保存和加载带来的I/O挑战,华为云提供了基于对象存储服务OBS+高性能弹性文件服务SFS Turbo的AI云存储解决方案,如下图所示。 SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo H
查看诊断报告 Advisor分析profiling会输出html和xlsx两份文件。请优先查看html报告进行训练作业性能调优。xlsx中记录了html中全量数据,如集群计算、通信和下发的耗时,可以基于xlsx对计算耗时、下发耗时和带宽等列进行排序,从而快速过滤出计算慢卡、下发慢卡、带宽最小卡。
执行训练任务(历史版本) 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器 断点续训:加载权重+优化器 pt sft CKPT_LOAD_TYPE=0 CKPT_LOAD_TYPE=1 USER_CONVERTED_CKPT_PATH=xxx
执行训练任务(历史版本) 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器 断点续训:加载权重+优化器 pt sft CKPT_LOAD_TYPE=0 CKPT_LOAD_TYPE=1 USER_CONVERTED_CKPT_PATH=xxx
obs:bucket:GetBucketPolicy obs:bucket:DeleteBucketPolicy √ √ 查询数据处理的算法类别 GET /v2/{project_id}/processor-tasks/items modelarts:processTask:getProcessTask