检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 训练科学计算大模型训练数据要求所需数据量 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求 模型类别 特征要求 水平分辨率要求 区域范围要求
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。
数设置。 表1 NLP大模型预训练参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“NLP大模型”。 训练类型 选择“预训练”。 基础模型 选择预训练所需的基础模型,可从“已发布模型”或“未发布模型”中进行选择。 高级设置 chec
预报的不确定性,从而提高预报的准确性和可靠性。 集合成员数 用于选择生成预报的不同初始场的数量,取值为2~10。 扰动类型 用于选择生成集合预报初始场的扰动类型,包括perlin加噪和CNOP加噪两种方式。 Peilin噪音通过对输入数据(比如空间坐标)进行随机扰动,让模拟出的天气接近真实世界中的变化。
获取结果并返回。这样的设计使得Agent能够智能处理复杂任务,甚至跨领域解决问题,实现对复杂问题的自动化处理。 Agent开发平台支持两种类型的插件: 预置插件:平台为开发者和用户提供了预置插件,直接可用,无需额外开发。例如,平台提供的“Python解释器插件”能够根据用户输入的
内容”、“文件格式”、“导入来源”,并单击“选择路径”上传数据文件。 NLP大模型评测数据集支持的格式见表1。 表1 评测数据集格式 模型类型 评测数据集格式 NLP大模型 文本-单轮问答-jsonl格式 上传数据文件后,填写“数据集名称”与“描述”,单击“立即创建”。 在左侧导航栏中选择“数据工程
文档、扫描版PDF文件等。 微调数据要求: 数据格式样例:JSONL格式,每行是一条JSON,包含“context”和“target”两个字段。示例如下: query改写模块:准备对应省略补全任务的数据和对应指代消解任务的数据。 {"context": ["你对李健怎么看 | 音
在“创建标注任务”页面选择需要标注的文本类数据集,并选择标注项。 选择标注项时,不同类型的数据文件对应的标注项有所差异,可基于页面提示进行选择。 单击“下一步”,可查看效果预览。 单击“下一步”,参考表1配置标注分配与审核。 表1 标注分配与审核配置 参数类型 参数名称 参数说明 标注分配 启用多人标注 关闭时,默认管理员单人标注。
> 数据发布 > 数据流通”,单击界面右上角“创建流通任务”。 在“创建流通任务”页面,选择数据集模态,如“图片 > 图片+Caption”类型的数据集。 图1 选择数据集模态 选择数据集,单击“下一步”。 在“格式配置”选择发布格式。由于数据工程需要支持对接盘古大模型,为了使这些
过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。 图片去重
Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explorer中具体API页面的“代码示例”页签查看对应编程语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输
如何判断任务场景应通过调整提示词还是场景微调解决 在选择是否通过调整提示词或场景微调来解决任务时,需要从以下两个主要方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一
频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权平均后得到的值,权重是每个类别在数据集中出现的频率。这个指标用来衡量模型在各个类别上的总体性能,数值越高,表明模型性能越好。 平均精度 平均精度用于衡量模型在不同类别上的检测准确率。数值越高,表明模型性能越好。
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
> 模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,模型来源选择“盘古大模型”。输入模型对应的obs地址和模型名称、选择资源类型、输入资产描述并设置资产可见性后,单击“确定”,启动导入模型任务。 图3 导入模型 父主题: 管理盘古大模型空间资产
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提
显著加速大模型应用的开发流程,帮助企业快速应对复杂业务需求。 预置模型使用流程 ModelArts Studio大模型开发平台提供了不同类型的预置模型,包括NLP大模型和科学计算大模型。用户可将预置模型部署为预置服务,用于后续的调用操作。 其中,NLP预置模型使用流程见图1、表
在城市政务“一网统管”的场景中,往往建设有庞大复杂的城市事件类别体系,包含了繁多细碎的事项类别,如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可能还有不同的标准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城市政务场景面临着众多碎片化AI需求场景。
状态码 HTTP状态码为三位数,分成五个类别:1xx:相关信息;2xx:操作成功;3xx:重定向;4xx:客户端错误;5xx:服务器错误。 状态码如下所示。 状态码 编码 状态说明 100 Continue 继续请求。 这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。